annotate scripts_R/Metadata_subsetBLSM.R @ 105:edd82eb89b4b branch-tests tip

Merge
author Maria Panteli
date Sun, 15 Oct 2017 13:36:59 +0100
parents d3e05cd49feb
children
rev   line source
m@77 1 df = read.csv('../data/results/df_and_clusters.csv', header=T)
Maria@70 2
Maria@70 3 source("MetadataPlots.R")
Maria@70 4
Maria@70 5 ## for plos use arial
Maria@70 6 #install.packages("extrafont")
Maria@70 7 library(extrafont)
Maria@70 8 font_import()
Maria@70 9 loadfonts()
Maria@70 10 Arial <- Type1Font(family="Arial", metrics=c("ArialMT.afm","arial-BoldMT.afm","Arial-ItalicMT.afm", "Arial-BoldItalicMT.afm"))
Maria@70 11 postscriptFonts(Arial=Arial)
Maria@70 12 par(family="Arial")
Maria@70 13
Maria@70 14 #pdf(file="data/country_distribution_BL.pdf")
m@91 15 pdf(file="../data/results/country_distribution.pdf", pointsize=12, width=6, height=4)
Maria@70 16 PlotCountryCounts(df)
Maria@70 17 dev.off()
m@91 18 postscript(file="../data/results/country_distribution.eps", pointsize=12, width=6, height=4)
Maria@70 19 PlotCountryCounts(df)
Maria@70 20 dev.off()
Maria@70 21
m@91 22 pdf(file="../data/results/year_distribution.pdf", width=6, height=4, pointsize=12)
Maria@70 23 PlotYearDistribution(df)
Maria@70 24 dev.off()
m@91 25 postscript("../data/results/year_distribution.eps", width=10, pointsize=12)
Maria@70 26 PlotYearDistribution(df)
Maria@70 27 dev.off()
Maria@70 28 #PlotBarChart(df, cat="Year", ordercat="REGION", mincount=10)
Maria@70 29
Maria@70 30 #pdf(file="data/language_distribution_BL.pdf")
Maria@70 31 levels(df$Language)[which(levels(df$Language)=="Southwestern Caribbean Creole English")]="SouthW Carib. Creole English"
Maria@70 32 df$Language[which(df$Language=="Southwestern Caribbean Creole English")] = "SouthW Carib. Creole English"
Maria@70 33 levels(df$Language)[which(levels(df$Language)=="Lesser Antillean Creole French")]="Lesser Antil. Creole French"
Maria@70 34 df$Language[which(df$Language=="Lesser Antillean Creole French")] = "Lesser Antil. Creole French"
Maria@70 35 df$REGION[which(df$Country=="French Guiana")] = "South America"
m@91 36 pdf(file="../data/results/language_distribution.pdf", pointsize=12)
Maria@70 37 PlotBarChart(df, cat="Language", ordercat="Region", mincount=10)
Maria@70 38 dev.off()
m@91 39 postscript("../data/results/language_distribution.eps", width=8, height=10, pointsize=12)
Maria@70 40 PlotBarChart(df, cat="Language", ordercat="Region", mincount=10)
Maria@70 41 dev.off()
Maria@70 42
m@77 43 df = read.csv('../data/results/df_and_clusters.csv', header=T)
Maria@70 44 #PlotBarChart(df, cat="Clusters", ordercat="CountryLang", mincount=1,legend=F)
Maria@70 45 df$REGION[which(df$Country=="French Guiana")] = "South America"
Maria@70 46 g = ggplot(df,aes(df$Clusters, fill=df$REGION))+geom_bar()
Maria@70 47 levels(df$REGION)[which(levels(df$REGION)=="South America")]="S. America"
Maria@70 48 levels(df$REGION)[which(levels(df$REGION)=="North America")]="N. America"
Maria@70 49
Maria@70 50 #library(rworldmap)
Maria@70 51 #wrld = getMap()
Maria@70 52 #regiondata<-wrld@data[,c("ADMIN","GEO3", "Stern")]
Maria@70 53 #df<-merge(df,regiondata,by.x="Country",by.y="ADMIN",all.x=T)
Maria@70 54
Maria@70 55 #cluster_labels_df = read.csv('data/clusters_top3_labels.csv')
m@77 56 cluster_labels_df = read.csv('../data/results/clusters_top3_countries.csv')
Maria@70 57 cluster_labels = paste(cluster_labels_df[,1],cluster_labels_df[,2],cluster_labels_df[,3],sep="")
Maria@70 58 #df$CountryLang = as.factor(paste(df$Country, df$Language, sep="-"))
Maria@70 59
Maria@70 60 countrycounts = table(df$Clusters,df$Country)
Maria@70 61 library(cluster)
Maria@70 62 library(ape)
Maria@70 63 library(gridExtra)
Maria@70 64 library(ggdendro)
Maria@70 65 library(dendextend)
Maria@70 66 hc = hclust(dist(countrycounts), method="average")
Maria@70 67 hc2=hc
Maria@70 68 #hc2$labels = as.character(1:length(cluster_labels))
Maria@70 69 hc2$labels = ""
Maria@70 70 #dhc <- as.dendrogram(hc2)
Maria@70 71 # library(dynamicTreeCut)
Maria@70 72 # clusters <- cutreeDynamic(hc2, minClusterSize = k_clust,method = "tree")
Maria@70 73 # clusters <- clusters[order.dendrogram(dhc)]
Maria@70 74 # clusters_numbers <- unique(clusters) - (0 %in% clusters)
Maria@70 75 # n_clusters <- length(clusters_numbers)
Maria@70 76 # library(colorspace)
Maria@70 77 # cols <- rainbow_hcl(n_clusters)
Maria@70 78 # dhc <- hc2 %>% as.dendrogram %>%
Maria@70 79 # set("branches_k_color", k=k_clust) %>% branches_attr_by_clusters(clusters, values = cols)
Maria@70 80 k_clust = 5
Maria@70 81 dhc <- hc2 %>% as.dendrogram %>%
Maria@70 82 set("branches_k_color", k=k_clust) %>% set("branches_lwd", 0.7) %>%
Maria@70 83 set("labels_cex", 0.6) %>% set("labels_colors", k=k_clust) %>%
Maria@70 84 set("leaves_pch", 19) %>% set("leaves_cex", 0.5)
Maria@70 85 #ddata <- dendro_data(dhc, type = "rectangle")
Maria@70 86 ddata <- as.ggdend(dhc)
Maria@70 87 p <- ggplot(ddata)+coord_flip()
Maria@70 88 #p <- ggplot(segment(ddata)) +
Maria@70 89 # geom_segment(aes(x = x, y = y, xend = xend, yend = yend, colour=ddata$segments$col)) +
Maria@70 90 # coord_flip() + theme_dendro() + theme(legend.position="none") +
Maria@70 91 # geom_text(aes(x = x, y = y, label = label, angle = -90, hjust = 0.5, vjust=1.3, colour=ddata$labels$col), data= label(ddata))
Maria@70 92
Maria@70 93 #dend <- hc2 %>% as.dendrogram %>%
Maria@70 94 # set("branches_k_color", k = 5) %>% set("branches_lwd", 0.7) %>%
Maria@70 95 # set("labels_cex", 0.6) %>% set("labels_colors", k = 5) %>%
Maria@70 96 # set("leaves_pch", 19) %>% set("leaves_cex", 0.5)
Maria@70 97 #ggd1 <- as.ggdend(dend)
Maria@70 98 #pp <- ggplot(ggd1, horiz = TRUE)
Maria@70 99
Maria@70 100 library(stringr)
Maria@70 101 for (i in 1:length(cluster_labels)){
Maria@70 102 cl = cluster_labels[i]
Maria@70 103 cl = str_replace_all(cl, "[(']", "")
Maria@70 104 cl = str_replace_all(cl, "[|]", "-")
Maria@70 105 cl = str_replace_all(cl, ", ", " (")
Maria@70 106 cl = str_replace_all(cl, "[)]", "), ")
Maria@70 107 cl = str_replace_all(cl, "nan", "NA")
Maria@70 108 #cl = paste(cl, "cluster",i)
Maria@70 109 cluster_labels[i] = cl
Maria@70 110 }
Maria@70 111 #cluster_idx = paste("cluster",1:length(cluster_labels))
Maria@70 112 #df$Clusters = as.factor(df$Clusters)
Maria@70 113 df$Clusters = factor(x=df$Clusters,levels=hc$labels[hc$order])
Maria@70 114 cluster_labels = cluster_labels[hc$order]
Maria@70 115 #g = ggplot(df,aes(as.factor(df$Clusters), fill=df$CountryLang))+geom_bar()
Maria@70 116 #g = ggplot(df,aes(Clusters, fill=REGION))+geom_bar()+facet_grid(~REGION,space="free",scales="free")#,scales="free")
Maria@70 117 g = ggplot(df,aes(as.factor(df$Clusters), fill=df$Region))+geom_bar()
Maria@70 118 #g = ggplot(df,aes(as.factor(df$Clusters), fill=df$REGION))+geom_bar()
Maria@70 119 g = g+scale_x_discrete(labels=cluster_labels)
Maria@70 120 #g = g+scale_y_continuous(position="right")
Maria@70 121 #g = g+scale_fill_brewer(palette="Paired")#+scale_fill_grey()
Maria@70 122 g = g+scale_fill_brewer(palette="Paired")#+scale_fill_grey()
Maria@70 123 #g = g+labs(y="Counts", x="Top 3 country-language tags in each cluster")+coord_flip()+theme_bw()#+guides(fill="none")
Maria@70 124 g = g+labs(y="Counts", x="Clusters")+coord_flip()+theme_bw()#+guides(fill="none")
Maria@70 125 #g = g+labs(y="Counts", x="Clusters")+coord_flip()+theme_bw()#+guides(fill="none")
Maria@70 126 #g = g+guides(fill = guide_legend(title = "Region"))+theme(legend.position=c(.9,.8),legend.margin = unit(0, "cm"),legend.key.size = unit(0.3, "cm"),legend.title = element_text(size=10),legend.text = element_text(size=10))
Maria@70 127 #g = g+guides(fill = guide_legend(title = "Region"))+theme(legend.position="left",legend.margin = unit(0, "cm"),legend.key.size = unit(0.3, "cm"),legend.title = element_text(size=9),legend.text = element_text(size=9))
Maria@70 128 g = g+guides(fill = guide_legend(title = "Region"))+theme(legend.position="top",legend.title = element_text(size=9),legend.text = element_text(size=9))
Maria@70 129 g = g+theme(panel.border = element_rect(colour = "white"),strip.background=element_rect(fill="white"),strip.text.x = element_blank())
Maria@70 130 #g = g+theme(axis.text.y = element_text(colour = ddata$labels$col))
m@91 131 ggsave('../data/results/clusters_top3.pdf',plot=g, pointsize=12)
m@91 132 ggsave('../data/results/clusters_top3.eps',plot=g, pointsize=12)