annotate scripts/load_features.py @ 105:edd82eb89b4b branch-tests tip

Merge
author Maria Panteli
date Sun, 15 Oct 2017 13:36:59 +0100
parents 3ed4c6af5a93
children
rev   line source
Maria@4 1 # -*- coding: utf-8 -*-
Maria@4 2 """
Maria@4 3 Created on Thu Mar 16 01:50:57 2017
Maria@4 4
Maria@4 5 @author: mariapanteli
Maria@4 6 """
Maria@4 7
Maria@4 8 import numpy as np
Maria@4 9 import pandas as pd
Maria@4 10 import os
Maria@4 11 from sklearn.decomposition import NMF
Maria@4 12 import OPMellin as opm
Maria@4 13 import MFCC as mfc
Maria@4 14 import PitchBihist as pbi
Maria@4 15
Maria@4 16
Maria@4 17 class FeatureLoader:
Maria@4 18 def __init__(self, win2sec=8):
Maria@4 19 self.win2sec = float(win2sec)
Maria@4 20 self.sr = 44100.
Maria@4 21 self.win1 = int(round(0.04*self.sr))
Maria@4 22 self.hop1 = int(round(self.win1/8.))
Maria@4 23 self.framessr = self.sr/float(self.hop1)
Maria@4 24 self.win2 = int(round(self.win2sec*self.framessr))
Maria@4 25 self.hop2 = int(round(0.5*self.framessr))
Maria@4 26 self.framessr2 = self.framessr/float(self.hop2)
Maria@4 27
Maria@4 28
m@26 29 def get_op_mfcc_for_file(self, melspec_file=None, scale=True, stop_sec=30.0):
Maria@4 30 op = []
Maria@4 31 mfc = []
Maria@4 32 if not os.path.exists(melspec_file):
Maria@4 33 return op, mfc
Maria@4 34 print 'extracting onset patterns and mfccs...'
Maria@4 35 songframes = pd.read_csv(melspec_file, engine="c", header=None)
Maria@4 36 songframes.iloc[np.where(np.isnan(songframes))] = 0
Maria@35 37 n_stop = np.int(np.ceil(stop_sec * self.framessr))
m@26 38 songframes = songframes.iloc[0:min(len(songframes), n_stop), :]
Maria@4 39 melspec = songframes.get_values().T
Maria@4 40 op = self.get_op_from_melspec(melspec, K=2)
Maria@4 41 mfc = self.get_mfcc_from_melspec(melspec)
Maria@4 42 if scale:
Maria@4 43 # scale all frames by mean and std of recording
Maria@4 44 op = (op - np.nanmean(op)) / np.nanstd(op)
Maria@4 45 mfc = (mfc - np.nanmean(mfc)) / np.nanstd(mfc)
Maria@4 46 return op, mfc
Maria@4 47
Maria@4 48
m@26 49 def get_chroma_for_file(self, chroma_file=None, scale=True, stop_sec=30.0):
Maria@4 50 ch = []
Maria@4 51 if not os.path.exists(chroma_file):
Maria@4 52 return ch
Maria@4 53 print 'extracting chroma...'
Maria@4 54 songframes = pd.read_csv(chroma_file, engine="c", header=None)
Maria@4 55 songframes.iloc[np.where(np.isnan(songframes))] = 0
m@26 56 n_stop = np.int(np.ceil(stop_sec * self.framessr))
Maria@35 57 songframes = songframes.iloc[0:min(len(songframes), n_stop), :]
Maria@4 58 chroma = songframes.get_values().T
Maria@4 59 ch = self.get_ave_chroma(chroma)
Maria@4 60 if scale:
Maria@4 61 # scale all frames by mean and std of recording
Maria@4 62 ch = (ch - np.nanmean(ch)) / np.nanstd(ch)
Maria@4 63 return ch
Maria@4 64
Maria@4 65
Maria@4 66 def get_music_idx_from_bounds(self, bounds, sr=None):
Maria@4 67 music_idx = []
Maria@4 68 if len(bounds) == 0:
Maria@4 69 # bounds is empty list
Maria@4 70 return music_idx
Maria@4 71 nbounds = bounds.shape[0]
Maria@4 72 if len(np.where(bounds[:,2]=='m')[0])==0:
Maria@4 73 # no music segments
Maria@4 74 return music_idx
Maria@4 75 elif len(np.where(bounds[:,2]=='s')[0])==nbounds:
Maria@4 76 # all segments are speech
Maria@4 77 return music_idx
Maria@4 78 else:
Maria@34 79 win2_frames = np.int(np.round(self.win2sec * self.framessr2))
Maria@34 80 #half_win_hop = int(round(0.5 * self.win2 / float(self.hop2)))
Maria@4 81 music_bounds = np.where(bounds[:, 2] == 'm')[0]
Maria@4 82 bounds_in_frames = np.round(np.array(bounds[:, 0], dtype=float) * sr)
Maria@34 83 duration_in_frames = np.ceil(np.array(bounds[:, 1], dtype=float) * sr)
Maria@4 84 for music_bound in music_bounds:
Maria@34 85 #lower_bound = np.max([0, bounds_in_frames[music_bound] - half_win_hop])
Maria@34 86 #upper_bound = bounds_in_frames[music_bound] + duration_in_frames[music_bound] - half_win_hop
Maria@34 87 lower_bound = bounds_in_frames[music_bound]
Maria@34 88 upper_bound = bounds_in_frames[music_bound] + duration_in_frames[music_bound] - win2_frames
Maria@4 89 music_idx.append(np.arange(lower_bound, upper_bound, dtype=int))
Maria@4 90 if len(music_idx)>0:
Maria@4 91 music_idx = np.sort(np.concatenate(music_idx)) # it should be sorted, but just in case segments overlap -- remove duplicates if segments overlap
Maria@4 92 return music_idx
m@6 93
Maria@4 94
Maria@4 95 def get_music_idx_for_file(self, segmenter_file=None):
Maria@4 96 music_idx = []
Maria@4 97 if os.path.exists(segmenter_file) and os.path.getsize(segmenter_file)>0:
Maria@4 98 print 'loading speech/music segments...'
Maria@4 99 bounds = pd.read_csv(segmenter_file, header=None, delimiter='\t').get_values()
Maria@4 100 if bounds.shape[1] == 1: # depends on the computer platform
Maria@4 101 bounds = pd.read_csv(segmenter_file, header=None, delimiter=',').get_values()
Maria@4 102 music_idx = self.get_music_idx_from_bounds(bounds, sr=self.framessr2)
Maria@4 103 return music_idx
Maria@4 104
Maria@4 105
m@42 106 def get_features(self, df, stop_sec=30.0, class_label='Country', precomp_melody=True):
Maria@4 107 oplist = []
Maria@4 108 mflist = []
Maria@4 109 chlist = []
Maria@4 110 pblist = []
Maria@4 111 clabels = []
Maria@4 112 aulabels = []
Maria@4 113 n_files = len(df)
Maria@4 114 for i in range(n_files):
Maria@4 115 if not (os.path.exists(df['Melspec'].iloc[i]) and os.path.exists(df['Chroma'].iloc[i]) and os.path.exists(df['Melodia'].iloc[i])):
Maria@4 116 continue
Maria@4 117 print 'file ' + str(i) + ' of ' + str(n_files)
Maria@4 118 music_idx = self.get_music_idx_for_file(df['Speech'].iloc[i])
m@43 119 #min_dur_sec=8.0
m@43 120 #min_n_frames = np.int(np.floor(min_dur_sec * self.framessr2))
m@43 121 if len(music_idx)==0: # or len(music_idx)<min_n_frames:
m@43 122 # no music segments or music segment too short -> skip this file
Maria@4 123 continue
m@46 124 try:
m@43 125 # allow feature extraction of longer segments (2*stop_sec)
m@43 126 # because some of it might be speech segments that are filtered out
m@43 127 stop_sec_feat = 2 * stop_sec
m@43 128 op, mfcc = self.get_op_mfcc_for_file(df['Melspec'].iloc[i], stop_sec=stop_sec_feat)
m@43 129 ch = self.get_chroma_for_file(df['Chroma'].iloc[i], stop_sec=stop_sec_feat)
m@43 130 pb = self.get_pb_for_file(df['Melodia'].iloc[i], precomp_melody=precomp_melody, stop_sec=stop_sec_feat)
Maria@35 131 #if precomp_melody:
Maria@35 132 # pb = self.load_precomputed_pb_from_melodia(df['Melodia'].iloc[i], stop_sec=stop_sec)
Maria@35 133 #else:
Maria@35 134 # pb = self.get_pb_from_melodia(df['Melodia'].iloc[i], stop_sec=stop_sec)
m@46 135 except:
Maria@4 136 continue
m@26 137 n_stop = np.int(np.ceil(stop_sec * self.framessr2))
Maria@35 138 print n_stop, len(op), len(mfcc), len(ch), len(pb)
m@43 139 max_n_frames = np.min([n_stop, len(op), len(mfcc), len(ch), len(pb)]) # ideally, features should have the same number of frames
m@43 140 if max_n_frames==0:
Maria@4 141 # no features extracted -> skip this file
Maria@4 142 continue
m@43 143 # music segment duration must be <= 30sec
m@43 144 music_idx = music_idx[music_idx<max_n_frames]
Maria@4 145 n_frames = len(music_idx)
Maria@4 146 oplist.append(op.iloc[music_idx, :])
Maria@4 147 mflist.append(mfcc.iloc[music_idx, :])
Maria@4 148 chlist.append(ch.iloc[music_idx, :])
Maria@4 149 pblist.append(pb.iloc[music_idx, :])
Maria@4 150 clabels.append(pd.DataFrame(np.repeat(df[class_label].iloc[i], n_frames)))
Maria@4 151 aulabels.append(pd.DataFrame(np.repeat(df['Audio'].iloc[i], n_frames)))
Maria@4 152 print len(oplist), len(mflist), len(chlist), len(pblist), len(clabels), len(aulabels)
Maria@4 153 return pd.concat(oplist), pd.concat(mflist), pd.concat(chlist), pd.concat(pblist), pd.concat(clabels), pd.concat(aulabels)
Maria@4 154
Maria@4 155
Maria@4 156 def get_op_from_melspec(self, melspec, K=None):
Maria@4 157 op = opm.OPMellin(win2sec=self.win2sec)
Maria@4 158 opmellin = op.get_opmellin_from_melspec(melspec=melspec, melsr=self.framessr)
Maria@35 159 opmel = pd.DataFrame(opmellin.T)
Maria@4 160 if K is not None:
Maria@4 161 opmel = self.mean_K_bands(opmellin.T, K)
Maria@35 162 opmel = pd.DataFrame(opmel)
Maria@4 163 return opmel
Maria@4 164
Maria@4 165
Maria@4 166 def get_mfcc_from_melspec(self, melspec, deltamfcc=True, avelocalframes=True, stdlocalframes=True):
Maria@4 167 mf = mfc.MFCCs()
Maria@4 168 mfcc = mf.get_mfccs_from_melspec(melspec=melspec, melsr=self.framessr)
Maria@4 169 if deltamfcc:
Maria@4 170 ff = mfcc
Maria@4 171 ffdiff = np.diff(ff, axis=1)
Maria@4 172 ffdelta = np.concatenate((ffdiff, ffdiff[:,-1,None]), axis=1)
Maria@4 173 frames = np.concatenate([ff,ffdelta], axis=0)
Maria@4 174 mfcc = frames
Maria@4 175 if avelocalframes:
Maria@4 176 mfcc = self.average_local_frames(mfcc, getstd=stdlocalframes)
Maria@4 177 mfcc = pd.DataFrame(mfcc.T)
Maria@4 178 return mfcc
Maria@4 179
Maria@4 180
Maria@35 181 def get_ave_chroma(self, chroma, alignchroma=True, avelocalframes=True, stdlocalframes=True):
Maria@4 182 chroma[np.where(np.isnan(chroma))] = 0
Maria@4 183 if alignchroma:
Maria@35 184 maxind = np.argmax(np.sum(chroma, axis=1)) # bin with max magnitude across time
Maria@4 185 chroma = np.roll(chroma, -maxind, axis=0)
Maria@4 186 if avelocalframes:
Maria@4 187 chroma = self.average_local_frames(chroma, getstd=stdlocalframes)
Maria@4 188 chroma = pd.DataFrame(chroma.T)
Maria@4 189 return chroma
Maria@4 190
Maria@4 191
Maria@4 192 def average_local_frames(self, frames, getstd=False):
Maria@4 193 nbins, norigframes = frames.shape
Maria@4 194 if norigframes<self.win2:
Maria@4 195 nframes = 1
Maria@4 196 else:
Maria@4 197 nframes = int(1+np.floor((norigframes-self.win2)/float(self.hop2)))
Maria@4 198 if getstd:
Maria@4 199 aveframes = np.empty((nbins+nbins, nframes))
Maria@4 200 for i in range(nframes): # loop over all 8-sec frames
Maria@4 201 meanf = np.nanmean(frames[:, (i*self.hop2):min((i*self.hop2+self.win2),norigframes)], axis=1)
Maria@4 202 stdf = np.nanstd(frames[:, (i*self.hop2):min((i*self.hop2+self.win2),norigframes)], axis=1)
Maria@4 203 aveframes[:,i] = np.concatenate((meanf,stdf))
Maria@4 204 else:
Maria@4 205 aveframes = np.empty((nbins, nframes))
Maria@4 206 for i in range(nframes): # loop over all 8-sec frames
Maria@4 207 aveframes[:,i] = np.nanmean(frames[:, (i*self.hop2):min((i*self.hop2+self.win2),norigframes)], axis=1)
Maria@4 208 return aveframes
Maria@4 209
Maria@4 210
Maria@4 211 def mean_K_bands(self, songframes, K=40, nmels=40):
Maria@4 212 [F, P] = songframes.shape
Maria@4 213 Pproc = int((P/nmels)*K)
Maria@4 214 procframes = np.zeros([F, Pproc])
Maria@4 215 niters = int(nmels/K)
Maria@4 216 nbins = P/nmels # must be 200 bins
Maria@4 217 for k in range(K):
Maria@4 218 for j in range(k*niters, (k+1)*niters):
Maria@4 219 procframes[:, (k*nbins):((k+1)*nbins)] += songframes[:, (j*nbins):((j+1)*nbins)]
Maria@4 220 procframes /= float(niters)
Maria@4 221 return procframes
Maria@4 222
Maria@4 223
Maria@4 224 def nmfpitchbihist(self, frames):
Maria@4 225 nbins, nfr = frames.shape
Maria@4 226 npc = 2
Maria@4 227 nb = int(np.sqrt(nbins)) # assume structure of pitch bihist is nbins*nbins
Maria@4 228 newframes = np.empty(((nb+nb)*npc, nfr))
Maria@4 229 for fr in range(nfr):
Maria@4 230 pb = np.reshape(frames[:, fr], (nb, nb))
Maria@4 231 try:
Maria@4 232 nmfmodel = NMF(n_components=npc).fit(pb)
Maria@4 233 W = nmfmodel.transform(pb)
Maria@4 234 H = nmfmodel.components_.T
Maria@4 235 newframes[:, fr, None] = np.concatenate((W, H)).flatten()[:, None]
Maria@4 236 except:
Maria@4 237 newframes[:, fr, None] = np.zeros(((nb+nb)*npc, 1))
Maria@4 238 return newframes
Maria@4 239
Maria@4 240
Maria@35 241 def get_pb_for_file(self, melodia_file, precomp_melody=False, nmfpb=True, scale=True, stop_sec=30.0):
Maria@35 242 pbihist = []
Maria@35 243 if precomp_melody:
Maria@35 244 pbihist = self.load_precomp_pb_from_melodia(melodia_file=melodia_file, stop_sec=stop_sec)
Maria@35 245 else:
Maria@35 246 pbihist = self.extract_pb_from_melodia(melodia_file=melodia_file, stop_sec=stop_sec)
Maria@35 247 if len(pbihist) == 0:
Maria@35 248 # no file was found
Maria@35 249 return pbihist
Maria@4 250 if nmfpb is True:
Maria@4 251 pbihist = self.nmfpitchbihist(pbihist)
Maria@4 252 pbihist = pd.DataFrame(pbihist.T)
Maria@4 253 if scale:
Maria@4 254 # scale all frames by mean and std of recording
Maria@4 255 pbihist = (pbihist - np.nanmean(pbihist)) / np.nanstd(pbihist)
Maria@4 256 return pbihist
Maria@4 257
Maria@4 258
Maria@35 259 def extract_pb_from_melodia(self, melodia_file=None, stop_sec=30.0):
Maria@35 260 pbihist = []
Maria@35 261 if not os.path.exists(melodia_file):
Maria@35 262 return pbihist
Maria@35 263 print 'extracting pitch bihist from melodia...'
Maria@35 264 pb = pbi.PitchBihist(win2sec=self.win2sec)
Maria@35 265 pbihist = pb.bihist_from_melodia(filename=melodia_file, stop_sec=stop_sec)
Maria@35 266 return pbihist
Maria@35 267
Maria@35 268
Maria@35 269 def load_precomp_pb_from_melodia(self, melodia_file=None, stop_sec=30.0):
Maria@35 270 pbihist = []
Maria@4 271 base = os.path.basename(melodia_file)
Maria@4 272 root = '/import/c4dm-05/mariap/Melodia-melody-'+str(int(self.win2sec))+'sec/'
m@24 273 root_BL = '/import/c4dm-04/mariap/FeatureCsvs_BL_old/PB-melodia/'
m@24 274 root_SM = '/import/c4dm-04/mariap/FeatureCsvs/PB-melodia/'
m@24 275 if 'SampleAudio' in base:
m@24 276 root = root_SM
m@24 277 else:
m@24 278 root = root_BL
m@46 279 base = base.split('_')[-1].split('.csv')[0]+'_vamp_mtg-melodia_melodia_melody.csv'
m@43 280 bihist_file = os.path.join(root, base)
m@43 281 if not os.path.exists(bihist_file):
m@43 282 return pbihist
Maria@4 283 print 'load precomputed pitch bihist', root
m@43 284 pbihist = np.loadtxt(bihist_file, delimiter=',').T
Maria@35 285 n_stop = np.int(np.ceil(stop_sec * self.framessr2))
Maria@35 286 pbihist = pbihist[:, :np.min([pbihist.shape[0], n_stop])]
Maria@4 287 return pbihist
Maria@4 288