Mercurial > hg > plml
diff prolog/plml.pl @ 0:0dd31a8c66bd
Initial check in to Mercurial, V.1
author | samer |
---|---|
date | Fri, 13 Jan 2012 15:29:02 +0000 |
parents | |
children | 4d183f2855c2 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/prolog/plml.pl Fri Jan 13 15:29:02 2012 +0000 @@ -0,0 +1,969 @@ +/* + * Prolog part of Prolog-Matlab interface + * Version 2 + * + * Samer Abdallah (2004-2012) + * Centre for Digital Music, QMUl. + */ + +:- module(plml, + [ ml_open/1 % (+Id) + , ml_open/2 % (+Id, +Host) + , ml_open/3 % (+Id, +Host, +Options) + , ml_close/1 % (+Id) + + , ml_exec/2 % (+Id, +Expr) + , ml_eval/4 % (+Id, +Expr, +Types, -Vals) + , ml_test/2 % (+Id, +Expr) + + , (??)/1 % (+Expr) ~execute Matlab expression + , (???)/1 % (+Expr) ~test Matlab boolean expression + , (===)/2 % (-Vals,+Expr) ~evaluate Matlab expression + + , term_mlstring/3 % (+Id, +Expr, -String) ~Prolog term to Matlab string + , term_texatom/2 % (+Expr, -Atom) ~Prolog term to TeX expression + , ml_debug/1 % (+Bool) + , wsvar/3 % (+WSBlob, -Name, -Id) + + % MATBASE + , persist_item/2 % (+Expr,-Expr) ~ convert volatile subterms to persistent form + , matbase_mat/2 % (+Dir, -Loc) ~ Find matbase MAT files + , dropmat/2 % (+Id, +Loc) ~ remove MAT file from matbase + , exportmat/3 % (+Id, +Loc, +Dir) ~ export MAT file from matbase + + + % Utilities + , compileoptions/2 + , multiplot/2 + , mhelp/1 + + , op(650,fy,`) % quoting things + , op(160,xf,``) % postfix transpose operator + , op(100,fy,@) % function handles + + % note slightly reduced precedence of array operators - + % hope this doesn't break everything... + , op(210,xfy,.^) % array exponentiation + , op(410,yfx,.*) % array times + , op(410,yfx,./) % array division + , op(410,xfy,.\) % reverse array division + , op(400,xfy,\) % reverse matrix division + , op(700,xfx,===) % variable binding/assignment in matlab query + , op(700,xfx,:==) % variable binding/assignment in matlab query + , op(951,fx,??) % evaluate term as matlab + , op(951,fx,???) % evaluate term as matlab boolean + , op(100,yfx,#) % field indexing (note left-associativity) + , op(750,fy,\\) % thunk abdstraction + , op(750,xfy,\\) % lambda abdstraction + + % exported after being imported from ops + , op(1100,xfx,::) % type specification (esp for arrays) + ]). + + +:- multifile(user:optionset/2). +:- multifile(user:matlab_path/2). +:- multifile(user:matlab_init/2). +:- multifile(user:pl2ml_hook/2). + + +/** <module> Prolog-Matlab interface + + ---++++ Types + + *|ml_eng|* - Any atom identifying a Matlab engine. + + *|ml_stmt|* - A Matlab statement + == + X;Y :: ml_stmt :- X:ml_stmt, Y:ml_stmt. + X,Y :: ml_stmt :- X:ml_stmt, Y:ml_stmt. + X=Y :: ml_stmt :- X:ml_lval, Y:ml_expr. + hide(X) :: ml_stmt :- X:ml_stmt. + == + + == + ml_expr(A) % A Matlab expression, possibly with multiple return values + ml_loc ---> mat(atom,atom). % Matbase locator + == + + ---++++ Matlab expression syntax + + The Matlab expression syntax adopted by this module allows Prolog terms to represent + or denote Matlab expressions. Let T be the domain of recognised Prolog terms (corresponding to + the type ml_expr), and M be the domain of Matlab expressions written in Matlab syntax. + Then V : T->M is the valuation function which maps Prolog term X to Matlab expression V[X]. + These are some of the constructs it recognises: + + Constructs valid only in top level statements, not subexpressions: + == + X;Y % |--> V[X]; V[Y] (sequential evaluation hiding first result) + X,Y % |--> V[X], V[Y] (sequential evaluation displaying first result) + X=Y % |--> V[X]=V[Y] (assignment, X must denote a valid left-value) + hide(X) % |--> V[X]; (execute X but hide return value) + == + + Things that look and work like Matlab syntax (more or less): + == + +X % |--> uplus(V[X]) + -X % |--> uminus(V[X]) + X+Y % |--> plus(V[X],V[Y]) + X-Y % |--> minus(V[X],V[Y]) + X^Y % |--> mpower(V[X],V[Y]) + X*Y % |--> mtimes(V[X],V[Y]) + X/Y % |--> mrdivide(V[X],V[Y]) + X\Y % |--> mldivide(V[X],V[Y]) + X.^Y % |--> power(V[X],V[Y]) + X.*Y % |--> times(V[X],V[Y]) + X./Y % |--> rdivide(V[X],V[Y]) + X.\Y % |--> ldivide(V[X],V[Y]) + X:Y:Z % |--> colon(V[X],V[Y],V[Z]) + X:Z % |--> colon(V[X],V[Z]) + X>Z % |--> gt(V[X],V[Y]) + X>=Z % |--> ge(V[X],V[Y]) + X<Z % |--> lt(V[X],V[Y]) + X=<Z % |--> le(V[X],V[Y]) + X==Z % |--> eq(V[X],V[Y]) + [X1,X2,...] % |--> [ V[X1], V[X2], ... ] + [X1;X2;...] % |--> [ V[X1]; V[X2]; ... ] + {X1,X2,...} % |--> { V[X1], V[X2], ... } + {X1;X2;...} % |--> { V[X1]; V[X2]; ... } + @X % |--> @V[X] (function handle) + == + + Things that do not look like Matlab syntax but provide standard Matlab features: + == + 'Infinity' % |--> inf (positive infinity) + 'Nan' % |--> nan (not a number) + X`` % |--> ctranpose(V[X]) (conjugate transpose, V[X]') + X#Y % |--> getfield(V[X],V[q(Y)]) + X\\Y % |--> @(V[X])V[Y] (same as lambda(X,Y)) + \\Y % |--> @()V[Y] (same as thunk(Y)) + lambda(X,Y) % |--> @(V[X])V[Y] (anonymous function with arguments X) + thunk(Y) % |--> @()V[Y] (anonymous function with no arguments) + vector(X) % |--> horzcat(V[X1],V[X2], ...) + atvector(X) % as vector but assumes elements of X are assumed all atomic + cell(X) % construct 1xN cell array from elements of X + `X % same as q(X) + q(X) % wrap V[X] in single quotes (escaping internal quotes) + qq(X) % wrap V[X] in double quotes (escaping internal double quotes) + tq(X) % wrap TeX expression in single quotes (escape internal quotes) + == + + Referencing different value representations. + == + mat(X,Y) % denotes a value in the Matbase using a dbload expression + mx(X:mx_blob) % denotes an MX Matlab array in SWI memory + ws(X:ws_blob) % denotes a variable in a Matlab workspace + wsseq(X:ws_blob) % workspace variable containing list as cell array. + == + + Tricky bits. + == + apply(X,AX) % X must denote a function or array, applied to list of arguments AX. + cref(X,Y) % cell dereference, |--> V[X]{ V[Y1], V[Y2], ... } + arr(Lists) % multidimensional array from nested lists. + arr(Lists,Dims) % multidimensional array from nested lists. + == + + Things to bypass default formatting + == + noeval(_) % triggers a failure when processed + atom(X) % write atom X as write/1 + term(X) % write term X as write/1 + \(P) % escape and call phrase P directly to generate Matlab string + $(X) % calls pl2ml_hook/2, denotes V[Y] where plml_hook(X,Y). + '$VAR'(N) % gets formatted as p_N where N is assumed to be atomic. + == + + All other Prolog atoms are written using write/1, while other Prolog terms + are assumed to be calls to Matlab functions named according to the head functor. + Thus V[ <head>( <arg1>, <arg2>, ...) ] = <head>(V[<arg1>, V[<arg2>], ...). + + There are some incompatibilities between Matlab syntax and Prolog syntax, + that is, syntactic structures that Prolog cannot parse correctly: + + * 'Command line' syntax, ie where a function of string arguments: + "save('x','Y')" can be written as "save x Y" in Matlab, + but in Prolog, you must use function call syntax with quoted arguments: + save(`x,`'Y'). + + * Matlab's postfix transpose operator "x'" must be written using a different + posfix operator "x``" or function call syntax "ctranspose(x)". + + * Matlab cell referencing using braces, as in x{1,2} must be written + as "cref(x,1,2)". + + * Field referencing using dot (.), eg x.thing - currently resolved + by using hash (#) operator, eg x#thing. + + * Using variables as arrays and indexing them. The problem is that + Prolog doesn't let you write a term with a variable as the head + functor. + + + @tbd + + Use mat(I) and tmp(I) as types to include engine Id. + + Clarify relationship between return values and valid Matlab denotation. + + Reshape/2 array representation: reshape([ ... ],Size) + Expression language: arr(Vals,Shape,InnerFunctor) - allows efficient + representation of arrays of arbitrary things. Will require more strict + nested list form. + + Deprecate old array(Vals::Type) and cell(Vals::Type) left-value syntax. + + Remove I from ml_expr//2 and add to mx type? +*/ + +:- use_module(library(apply_macros)). +:- use_module(library(ops)). +:- use_module(library(utils)). +:- use_module(library(dcgu)). + +:- load_foreign_library(foreign(plml)). + +:- op(700,xfx,===). % variable binding/assignment in matlab query +:- op(951,fx,??). % evaluate term as matlab +:- op(951,fx,???). % evaluate term as matlab boolean +:- op(650,fy,`). % quoting things +:- op(160,xf,``). % postfix transpose operator +:- op(100,fy,@). % function handles +:- op(200,xfy,.^). % array exponentiation +:- op(410,yfx,.*). % array times +:- op(410,yfx,./). % array division +:- op(410,xfy,.\). % array reverse division +:- op(400,xfy,\). % matrix reverse division +:- op(100,yfx,#). % field indexing (note left-associativity) + +:- dynamic plml_flag/2. + +set_flag(Flag,Value) :- + ground(Flag), + retractall(plml_flag(Flag,_)), + assert(plml_flag(Flag,Value)). + +:- at_halt(ml_closeall). + +ml_closeall :- + forall(plml_flag(ml(Id),open), + ( format('Closing Matlab engine (~w)...',[Id]), + ml_close(Id))). + +%% matlab_init( -Key, -Cmd:ml_expr) is nondet. +% Each user-defined clause of matlab_init/2 causes Cmd to be executed +% whenever a new Matlab session is started. + +%% matlab_path( -Key, -Path:list(atom)) is nondet. +% Each user-defined clause of matlab_path/2 causes the directories in Path +% to be added to the Matlab path of every new Matlab session. Directories +% are relative to the root directory as returned by Matlab function proot. + +%% pl2ml_hook(+X:term,-Y:ml_expr) is nondet. +% Clauses of pl2ml_hook/2 allow for extensions to the Matlab expression +% language such that =|V[$X] = V[Y]|= if =|pl2ml_hook(X,Y)|=. + + + +%% ml_open(+Id:ml_eng,+Host:atom,+Options:list(_)) is det. +%% ml_open(+Id:ml_eng, +Host:atom) is det. +%% ml_open(+Id:ml_eng) is det. +% +% Start a Matlab session on the given host. If Host=localhost +% or the name of the current current host as returned by hostname/1, +% then a Matlab process is started directly. Otherwise, it is +% started remotely via SSH. Options defaults to []. Host defaults to +% localhost. +% +% Start a Matlab session on the specified host using default options. +% If Host is not given, it defaults to localhost. Session will be +% associated with the given Id, which should be an atom. See ml_open/3. +% +% Valid options are +% * noinit +% If present, do not run initialisation commands specified by +% matlab_path/2 and matlab_init/2 clauses. Otherwise, do run them. +% * debug(In,Out) +% if present, Matlab is started in a script which captures standard +% input and output to files In and Out respectively. +% +% [What if session is already open and attached to Id?] + +ml_open(Id) :- ml_open(Id,localhost,[]). +ml_open(Id,Host) :- ml_open(Id,Host,[]). +ml_open(Id,Host,Options) :- + options_flags(Options,Flags), + ( (Host=localhost;hostname(Host)) + -> Exec='exec matlab' % using exec fixes Ctrl-C bug + ; Exec='ssh /usr/local/bin/matlab' + ), + ( member(debug(In,Out),Options) + -> format(atom(Exec1),'stdio_catcher ~w ~w nohup ~w',[In,Out,Exec]) + ; Exec1=Exec + ), + format(atom(Cmd),'~w ~w',[Exec,Flags]), + mlOPEN(Cmd,Id), + set_flag(ml(Id),open), + ( member(noinit,Options) -> true + ; forall( matlab_path(_,Dir), maplist(nofail(addpath),Dir)), + forall( matlab_init(_,Cmd), nofail(Cmd)) + ). + +addpath(local(D)) :- !, ml_exec(ml,padl(q(D))). +addpath(D) :- !, ml_exec(ml,padd(q(D))). + +%% ml_close(+Id:ml_eng) is det. +% Close Matlab session associated with Id. +ml_close(Id) :- mlCLOSE(Id), set_flag(ml(Id),closed). + +nofail(P) :- catch(ignore(call(P)), E, print_message(warning,E)). +nofail(P,X) :- catch(ignore(call(P,X)), E, print_message(warning,E)). + +options_flags(_,'nodesktop -nosplash -noawt'). + + +%% ml_exec(+Id:ml_eng, +Expr:ml_expr) is det. +% +% Execute Matlab expression without returning any values. +ml_exec(Id,X) :- + term_mlstring(Id,X,C), !, + (plml_flag(debug,true) -> format('ml_exec(~w):~s\n',[Id,C]); true), + mlEXEC(Id,C). + +%% ml_eval(+Id:ml_eng, +Expr:ml_expr, +Types:list(type), -Res:list(ml_val)) is det. +% +% Evaluate Matlab expression binding return values to results list Res. This new +% form uses an explicit output types list, so Res can be completely unbound on entry +% even when multiple values are required. +ml_eval(Id,X,Types,Vals) :- + maplist(alloc_ws(Id),Types,Vars), + ml_exec(Id,hide(wsx(Vars)=X)), + maplist(convert_ws,Types,Vars,Vals). + +alloc_ws(I,_,Z) :- mlWSALLOC(I,Z). + +%% ml_test(+Id:ml_eng, +X:ml_expr(bool)) is semidet. +% Succeeds if X evaluates to true in Matlab session Id. +ml_test(Id,X) :- ml_eval(Id,X,[bool],[1]). + + + +%% ===(Y:ml_vals(A), X:ml_expr(A)) is det. +% Evaluate Matlab expression X as in ml_eval/4, binding one or more return values +% to Y. If Y is unbound or a single ml_val(_), only the first return value is bound. +% If Y is a list, multiple return values are processed. +Y === X :- + ( is_list(Y) + -> maplist(leftval,Y,TX,VX), ml_eval(ml,X,TX,VX) + ; leftval(Y,T,V), ml_eval(ml,X,[T],[V]) + ). + +%% leftval( +TVal:tagged(T), -T:type, -Val:T) is det. +% True if TVal is a tagged value whos type is T and value is Val. +leftval( ws(X), ws, ws(X)). +leftval( mx(X), mx, mx(X)). +leftval( float(X), float, X). +leftval( int(X), int, X). +leftval( bool(X), bool, X). +leftval( atom(X), atom, X). +leftval( term(X), term, X). +leftval( string(X), string,X). +leftval( mat(X), mat, X). +leftval( tmp(X), tmp, X). +leftval( loc(X), loc, X). +leftval( wsseq(X), wsseq, wsseq(X)). +leftval( list(T,X), list(T), X). +leftval( array(X::[Size->Type]), array(Type,Size), X) :- !. +leftval( array(X::[Size]), array(float,Size), X) :- !. +leftval( cell(X::[Size->Type]), cell(Type,Size), X) :- !. +leftval( cell(X::[Size]), cell(mx,Size), X) :- !. +leftval( Val:Type, Type, Val). + + +%% ??(X:ml_expr(_)) is det. +% Execute Matlab expression X as with ml_exec/2, without returning any values. +?? X :- ml_exec(ml,X). + +%% ???(X:ml_expr(bool)) is semidet. +% Evaluate Matlab boolean expression X as with ml_test/2. +??? Q :- ml_test(ml,Q). + + +%% ml_debug(+Flag:boolean) is det. +% Set or reset debug state. =|ml_debug(true)|= causes formatted Matlab +% statements to be printed before being sent to Matlab engine. +ml_debug(F) :- set_flag(debug,F). + +/* + * DCG for term to matlab conversion + * the big problem with Matlab syntax is that you cannot always replace + * a name representing a value with an expression that reduces to that + * value. Eg + * X=magic(5), X(3,4) + * is ok, but + * (magic(5))(3,4) + * is not. Similarly x=@sin, x(0.5) but not (@sin)(0.5) + * This is really infuriating. + */ + + +% top level statement rules +stmt(I,hide(A)) --> !, stmt(I,A), ";". +stmt(I,(A;B)) --> !, stmt(I,A), ";", stmt(I,B). +stmt(I,(A,B)) --> !, stmt(I,A), ",", stmt(I,B). +stmt(I,A=B) --> !, ml_expr(I,A), "=", ml_expr(I,B). +stmt(I,Expr) --> !, ml_expr(I,Expr). + + +%% ml_expr(+Id:ml_eng,+X:ml_expr(A))// is nondet. +% Convert Matlab expression as a Prolog term to string representation. +ml_expr(_,\X) --> !, X. +ml_expr(I,$X) --> !, {pl2ml_hook(X,Y)}, ml_expr(I,Y). +ml_expr(I,q(X)) --> !, q(stmt(I,X)). +ml_expr(I,qq(X)) --> !, qq(stmt(I,X)). +ml_expr(_,tq(X)) --> !, q(pl2tex(X)). +ml_expr(_,atom(X)) --> !, atm(X). +ml_expr(_,term(X)) --> !, wr(X). % this could be dangerous +ml_expr(_,mat(X,Y)) --> !, "dbload(", loc(X,Y), ")". +ml_expr(_,loc(L)) --> !, { L=mat(X,Y) }, loc(X,Y). +ml_expr(I,mx(X)) --> !, { mlWSALLOC(I,Z), mlWSPUT(Z,X) }, ml_expr(I,ws(Z)). +ml_expr(I,ws(A)) --> !, { mlWSNAME(A,N,I) }, atm(N). +ml_expr(I,wsx([A|B])) --> !, { mlWSNAME(A,N,I) }, "[", atm(N), wsx(B), "]". +ml_expr(I,wsseq(A)) --> !, { mlWSNAME(A,N,I) }, atm(N). +ml_expr(_,noeval(_)) --> !, {fail}. % causes evaluation to fail. + +ml_expr(_,'Infinity') --> !, "inf". +ml_expr(_,'Nan') --> !, "nan". + +ml_expr(I,A+B) --> !, "plus", args(I,A,B). +ml_expr(I,A-B) --> !, "minus", args(I,A,B). +ml_expr(I, -B) --> !, "uminus", args(I,B). +ml_expr(I, +B) --> !, "uplus", args(I,B). +ml_expr(I,A^B) --> !, "mpower", args(I,A,B). +ml_expr(I,A*B) --> !, "mtimes", args(I,A,B). +ml_expr(I,A/B) --> !, "mrdivide", args(I,A,B). +ml_expr(I,A\B) --> !, "mldivide", args(I,A,B). +ml_expr(I,A.^B)--> !, "power", args(I,A,B). +ml_expr(I,A.*B)--> !, "times", args(I,A,B). +ml_expr(I,A./B)--> !, "rdivide", args(I,A,B). +ml_expr(I,A.\B)--> !, "ldivide", args(I,A,B). +ml_expr(I,A>B) --> !, "gt",args(I,A,B). +ml_expr(I,A<B) --> !, "lt",args(I,A,B). +ml_expr(I,A>=B)--> !, "ge",args(I,A,B). +ml_expr(I,A=<B)--> !, "le",args(I,A,B). +ml_expr(I,A==B)--> !, "eq",args(I,A,B). +ml_expr(I,A:B) --> !, range(I,A,B). + +ml_expr(_,[]) --> !, "[]". +ml_expr(_,{}) --> !, "{}". +ml_expr(I,[X]) --> !, "[", matrix(v,I,X), "]". +ml_expr(I,[X|XX]) --> !, "[", ml_expr(I,X), seqmap(do_then_call(",",ml_expr(I)),XX), "]". +ml_expr(I,{X}) --> !, "{", matrix(_,I,X), "}". + +ml_expr(I, `B) --> !, q(stmt(I,B)). +ml_expr(I,A#B) --> !, "getfield", args(I,A,q(B)). +ml_expr(I,B``) --> !, "ctranspose", args(I,B). +ml_expr(_,@B) --> !, "@", atm(B). +ml_expr(I, \\B) --> !, "@()", ml_expr(I,B). +ml_expr(I, A\\B) --> !, { term_variables(A,V), varnames(V) }, + "@(", ml_expr(I,A), ")", ml_expr(I,B). +ml_expr(I,lambda(A,B)) --> !, ml_expr(I,A\\B). +ml_expr(I,thunk(B)) --> !, ml_expr(I, \\B). + + +% !! This is problematic: we are using apply to represent both +% function application and array dereferencing. For function +% calls, A must be a function name atom or a function handle +% If A is an array, it cannot be an expression, unless we +% switch to using the paren Matlab function, which will be slower. +ml_expr(I,apply(A,B)) --> !, ml_expr(I,A), arglist(I,B). +ml_expr(I,cref(A,B)) --> !, ml_expr(I,A), "{", clist(I,B), "}". + +% array syntax +ml_expr(I,arr($X)) --> !, { pl2ml_hook(X,L) }, ml_expr(I,arr(L)). +ml_expr(I,arr(L)) --> !, { array_dims(L,D) }, array(D,I,L). +ml_expr(I,arr(D,L)) --> !, array(D,I,L). +ml_expr(I,arr(D,L,P)) --> !, array(D,I,P,L). +ml_expr(I,atvector(L))--> !, "[", clist_at(I,L), "]". +ml_expr(I,vector(L)) --> !, "[", clist(I,L), "]". +ml_expr(I,cell(L)) --> !, "{", clist(I,L), "}". +ml_expr(_,'$VAR'(N)) --> !, "p_", atm(N). + +% catch these and throw exception +ml_expr(_,hide(A)) --> {throw(ml_illegal_expression(hide(A)))}. +ml_expr(_,(A;B)) --> {throw(ml_illegal_expression((A;B)))}. +ml_expr(_,(A,B)) --> {throw(ml_illegal_expression((A,B)))}. +ml_expr(_,A=B) --> {throw(ml_illegal_expression(A=B))}. + +% these are the catch-all clauses which will deal with matlab names, and literals +% should we filter on the head functor? +ml_expr(_,A) --> {atomic(A)}, !, atm(A). +ml_expr(I,F) --> {F=..[H|AX]}, atm(H), arglist(I,AX). + +ml_expr_with(I,Lambda,Y) --> {copy_term(Lambda,Y\\PY)}, ml_expr(I,PY). + + +% dimensions implicit in nested list representation +array_dims([X|_],M) :- !, array_dims(X,N), succ(N,M). +array_dims(_,0). + +% efficiently output row vector of workspace variable names +wsx([]) --> []. +wsx([A|AX]) --> { mlWSNAME(A,N,_) }, ",", atm(N), wsx(AX). + +%% array(+Dims:natural, +Id:ml_eng, +Array)// is det. +% +% Format nested lists as Matlab multidimensional array. +% Dims is the number of dimensions of the resulting array and +% should equal the nesting level of Array, ie if Array=[1,2,3], +% Dims=1; if Array=[[1,2],[3,4]], Dims=2, etc. +array(0,I,X) --> !, ml_expr(I,X). +array(1,I,L) --> !, "[", seqmap_with_sep(";",ml_expr(I),L), "]". +array(2,I,L) --> !, "[", seqmap_with_sep(",",array(1,I),L), "]". +array(N,I,L) --> {succ(M,N)}, "cat(", atm(N), ",", seqmap_with_sep(",",array(M,I),L), ")". + +array(0,I,P,X) --> !, ml_expr_with(I,P,X). +array(1,I,P,L) --> !, "[", seqmap_with_sep(";",ml_expr_with(I,P),L), "]". +array(2,I,P,L) --> !, "[", seqmap_with_sep(",",array(1,I,P),L), "]". +array(N,I,P,L) --> {succ(M,N)}, "cat(", atm(N), ",", seqmap_with_sep(",",array(M,I,P),L), ")". + +matrix(h,I,(A,B)) --> !, ml_expr(I,A), ",", matrix(h,I,B). +matrix(v,I,(A;B)) --> !, ml_expr(I,A), ";", matrix(v,I,B). +matrix(_,I,A) --> !, ml_expr(I,A). + + +% colon syntax for ranges +range(I,A,B:C) --> !, "colon", arglist(I,[A,B,C]). +range(I,A,B) --> !, "colon", args(I,A,B). + + +%% clist(+Id:ml_eng, +Items:list(ml_expr))// is det. +% Format list of Matlab expressions in a comma separated list. +clist(_,[]) --> []. +clist(I,[L1|LX]) --> ml_expr(I,L1), seqmap(do_then_call(",",ml_expr(I)),LX). + + +%% clist_at(+Id:ml_eng, +Items:list(ml_expr))// is det. +% Format list of atoms in a comma separated list. +clist_at(_,[]) --> []. +clist_at(_,[L1|LX]) --> atm(L1), seqmap(do_then_call(",",atm),LX). + + +%% arglist(+Id:ml_eng, +Args:list(ml_expr))// is det. +% DCG rule to format a list of Matlab expressions as function arguments +% including parentheses. +arglist(I,X) --> "(", clist(I,X), ")". + + +%% args(+Id:ml_eng, +A1:ml_expr, +A2:ml_expr)// is det. +%% args(+Id:ml_eng, +A1:ml_expr)// is det. +% +% DCG rule to format one or two Matlab expressions as function arguments +% including parentheses. +args(I,X,Y) --> "(", ml_expr(I,X), ",", ml_expr(I,Y), ")". +args(I,X) --> "(", ml_expr(I,X), ")". + + +%% atm(+A:atom)// is det. +% DCG rule to format an atom using write/1. +atm(A,C,T) :- with_output_to(codes(C,T),write(A)). + +varnames(L) :- varnames(1,L). +varnames(_,[]). +varnames(N,[TN|Rest]) :- + atom_concat(p_,N,TN), succ(N,M), + varnames(M,Rest). + + +%% term_mlstring(+Id:ml_eng,+X:ml_expr,-Y:list(code)) is det. +% Convert term representing Matlab expression to a list of character codes. +term_mlstring(I,Term,String) :- phrase(stmt(I,Term),String), !. + +%% term_texatom(+X:tex_expr,-Y:atom) is det. +% Convert term representing TeX expression to a string in atom form. +term_texatom(Term,Atom) :- phrase(pl2tex(Term),String), !, atom_codes(Atom,String). + + + +% Once the computation has been done, the MATLAB workspace contains +% the results which must be transferred in the appropriate form the +% specified left-values, in one of several forms, eg mxArray pointer, +% a float, an atom, a string or a locator. +% +% Note that requesting a locator causes a further call +% to MATLAB to do a dbsave. +% +% If no type requestor tag is present, then a unique variable name +% is generated to store the result in the Matlab workspace. This name +% is returned in the variable as a ws blob. +% The idea is to avoid unnecessary traffic over the Matlab engine pipe. + +% conversion between different representations of values +% !! FIXME: check memory management of mxArrays here + + +%% convert_ws( +Type:type, +In:ws_blob, -Out:Type) is det. +% Convert value of Matlab workspace variable to representation +% determined by Type. +convert_ws(ws, Z, ws(Z)) :- !. +convert_ws(wsseq, Z, wsseq(Z)) :- !. +convert_ws(mx, Z, mx(Y)) :- !, mlWSGET(Z,Y). + +% conversions that go direct from workspace variables to matbase. +convert_ws(tmp, Z, Y) :- !, mlWSNAME(Z,_,I), bt_call(db_tmp(I,ws(Z),Y), db_drop(I,Y)). +convert_ws(mat, Z, Y) :- !, mlWSNAME(Z,_,I), bt_call(db_save(I,ws(Z),Y), db_drop(I,Y)). + +% return cell array as list of temporary or permanent mat file locators +% (this avoids getting whole array from WS to MX). +convert_ws(cell(tmp,Size), Z, L) :- !, + mlWSNAME(Z,_,I), + bt_call(db_tmp_all(I,ws(Z),L,Size), db_drop_all(I,L,Size)). + +convert_ws(cell(mat,Size), Z, L) :- !, + mlWSNAME(Z,_,I), + bt_call(db_save_all(I,ws(Z),L,Size), db_drop_all(I,L,Size)). + +% Most other conversions from ws(_) go via mx(_) +convert_ws(T,Z,A) :- mlWSGET(Z,X), convert_mx(T,X,A). + + +%% convert_mx( +Type:type, +In:mx_blob, -Out:Type) is det. +% Convert value of in-process Matlab array In to representation +% determined by Type. +convert_mx(atom, X, Y) :- !, mlMX2ATOM(X,Y). +convert_mx(bool, X, Y) :- !, mlMX2LOGICAL(X,Y). +convert_mx(float, X, Y) :- !, mlMX2FLOAT(X,Y). +convert_mx(int, X, Y) :- !, mlMX2FLOAT(X,Z), Y is truncate(Z). +convert_mx(string, X, Y) :- !, mlMX2STRING(X,Y). +convert_mx(term, X, Y) :- !, mlMX2ATOM(X,Z), term_to_atom(Y,Z). +convert_mx(loc, X, mat(Y,W)) :- !, mlMX2ATOM(X,Z), term_to_atom(Y|W,Z). + +convert_mx(mat, X, Y) :- !, % !!! use first engine to save to its matbase + plml_flag(ml(I),open), + bt_call( db_save(I,mx(X),Y), db_drop(I,Y)). +convert_mx(tmp, X, Y) :- !, % !!! use first engine to save to its matbase + plml_flag(ml(I),open), + bt_call( db_tmp(I,mx(X),Y), db_drop(I,Y)). + +convert_mx(list(float), X, Y) :- !, mlGETREALS(X,Y). + +convert_mx(cell(Type,Size), X, L) :- !, + mx_size_type(X,Size,cell), + prodlist(Size,1,Elems), % total number of elements + mapnats(conv_cref(Type,X),Elems,[],FL), + reverse(Size,RSize), + unflatten(RSize,FL,L). + +convert_mx(array(Type,Size), X, L) :- !, + mx_size_type(X,Size,MXType), + compatible(MXType,Type), + prodlist(Size,1,Elems), % total number of elements + mapnats(conv_aref(Type,X),Elems,[],FL), + reverse(Size,RSize), + unflatten(RSize,FL,L). + +compatible(double,float). +compatible(double,int). +compatible(double,bool). +compatible(logical,float). +compatible(logical,int). +compatible(logical,bool). + +% !! Need to worry about non gc mx atoms +conv_aref(bool, X,I,Y) :- !, mlGETLOGICAL(X,I,Y). +conv_aref(float, X,I,Y) :- !, mlGETFLOAT(X,I,Y). +conv_aref(int, X,I,Y) :- !, mlGETFLOAT(X,I,W), Y is truncate(W). + +conv_cref(mx,Z,I,Y) :- !, mlGETCELL(Z,I,Y). % !! non gc mx +conv_cref(Ty,Z,I,Y) :- !, conv_cref(mx,Z,I,X), convert_mx(Ty,X,Y). + +%convert(W, field(Z,N,I)) :- convert(mx(X),Z), mlGETFIELD(X,I,N,Y), convert_mx(W,Y). +%convert(W, field(Z,N)) :- convert(mx(X),Z), mlGETFIELD(X,1,N,Y), convert_mx(W,Y). + +% Utilities used by convert/2 + +mapnats(P,N,L1,L3) :- succ(M,N), !, call(P,N,PN), mapnats(P,M,[PN|L1],L3). +mapnats(_,0,L,L) :- !. + +prodlist([],P,P). +prodlist([X1|XX],P1,P3) :- P2 is P1*X1, prodlist(XX,P2,P3). + +concat(0,_,[]) --> !, []. +concat(N,L,[X1|XX]) --> { succ(M,N), length(X1,L) }, X1, concat(M,L,XX). + +% convert a flat list into a nested-list array representation +% using given size specification +unflatten([N],Y,Y) :- !, length(Y,N). +unflatten([N|NX],Y,X) :- + length(Y,M), + L is M/N, integer(L), L>=1, + phrase(concat(N,L,Z),Y), + maplist(unflatten(NX),Z,X). + +% thin wrappers +mx_size_type(X,Sz,Type) :- mlMXINFO(X,Sz,Type). +mx_sub2ind(X,Subs,Ind) :- mlSUB2IND(X,Subs,Ind). + + +% these create memory managed arrays, which are not suitable +% for putting into a cell array + +% roughly, mx_create :: type -> mxarray. +mx_create([Size],mx(X)) :- mlCREATENUMERIC(Size,Z), mlNEWREFGC(Z,X). +mx_create({Size},mx(X)) :- mlCREATECELL(Size,Z), mlNEWREFGC(Z,X). +mx_string(string(Y),mx(X)) :- mlCREATESTRING(Y,Z), mlNEWREFGC(Z,X). + +% MX as MUTABLE variables +mx_put(aref(mx(X),I),float(Y)) :- mlPUTFLOAT(X,I,Y). +mx_put(cref(mx(X),I),mx(Y)) :- mlPUTCELL(X,I,Y). % !! ensure that Y is non gc +mx_put(mx(X),list(float,Y)) :- mlPUTFLOATS(X,1,Y). + +%% wsvar(+X:ws_blob(A), -Nm:atom, -Id:ml_eng) is semidet. +% True if X is a workspace variable in Matlab session Id. +% Unifies Nm with the name of the Matlab variable. +wsvar(A,Name,Engine) :- mlWSNAME(A,Name,Engine). + +/* __________________________________________________________________________________ + * Dealing with the Matbase + * + * The Matbase is a file system tree which contains lots of + * MAT files which have been created by using the dbsave + * Matlab function. + */ + + +%% loc(Dir,File)// is det. +% DCG rule for matbase locator strings. Dir must be an atom slash-separated +% list of atoms representing a path relative to the matbase root (see Matlab +% function dbroot). File must be an atom. Outputs a single-quoted locator +% string acceptable to Matlab db functions. +loc(X,Y) --> "'", wr(X),"|",atm(Y), "'". + + +% saving and dropping matbase files +db_save(I,Z,Y) :- ml_eval(I,dbsave(Z),[loc],[Y]). +db_tmp(I,Z,Y) :- ml_eval(I,dbtmp(Z),[loc],[Y]). +db_drop(I,mat(A,B)) :- ml_exec(I,dbdrop(\loc(A,B))). + +db_save_all(I,Z,L,Size) :- ml_eval(I,cellmap(@dbsave,Z),[cell(loc,Size)],[L]). +db_tmp_all(I,Z,L,Size) :- ml_eval(I,cellmap(@dbtmp,Z),[cell(loc,Size)],[L]). +db_drop_all(I,L,Size) :- + length(Size,Dims), + ml_exec(I,hide(foreach(@dbdrop,arr(Dims,L,X\\{loc(X)})))). + + +%% dropmat(+Id:ml_id, +Mat:ml_loc) is det. +% Deleting MAT file from matbase. +dropmat(Eng,mat(A,B)) :- db_drop(Eng,mat(A,B)). + +%% exportmat(+Id:ml_id, +Mat:ml_loc, +Dir:atom) is det. +% Export specified MAT file from matbase to given directory. +exportmat(Eng,mat(A,B),Dir) :- ml_exec(Eng,copyfile(dbpath(\loc(A,B)),\q(wr(Dir)))). + +%% matbase_mat(+Id:ml_eng,-X:ml_loc) is nondet. +% Listing mat files actually in matbase at given root directory. +matbase_mat(Id,mat(SubDir/File,x)) :- + ml_eval(Id,[dbroot,q(/)],[atom],[DBRoot]), % NB with trailing slash + + atom_concat(DBRoot,'*/d*',DirPattern), + expand_file_name(DirPattern,Dirs), + member(FullDir,Dirs), + atom_concat( DBRoot,SubDirAtom,FullDir), + term_to_atom(SubDir,SubDirAtom), + atom_concat(FullDir,'/m*.mat',FilePattern), + expand_file_name(FilePattern,Files), + member(FullFile,Files), + file_base_name(FullFile,FN), + atom_concat(File,'.mat',FN). + + +%% persist_item(+X:ml_expr(A),-Y:ml_expr(A)) is det. +% Convert Matlab expression to persistent form not dependent on +% current Matlab workspace or MX arrays in Prolog memory space. +% Large values like arrays and structures are saved in the matbase +% replaced with matbase locators. Scalar values are converted to +% literal numeric values. Character strings are converted to Prolog atoms. +% Cell arrays wrapped in the wsseq/1 functor are converted to literal +% form. +% +% NB. any side effects are undone on backtracking -- in particular, any +% files created in the matbase are deleted. +persist_item($T,$T) :- !. +persist_item(mat(A,B),mat(A,B)) :- !. + +persist_item(ws(A),B) :- !, + mlWSNAME(A,_,Eng), + ml_eval(Eng,typecode(ws(A)),[int,bool,bool],[Numel,IsNum,IsChar]), + ( Numel=1, IsNum=1 + -> convert_ws(float,A,B) + ; IsChar=1 + -> convert_ws(atom,A,AA), B= `AA + ; convert_ws(mat,A,B) + ). + + +% !! TODO - +% deal with collections - we can either save the aggregate +% OR save the elements individually and get a prolog list of the +% locators. +persist_item(wsseq(A),cell(B)) :- + mlWSNAME(A,_,Eng), + ml_test(Eng,iscell(ws(A))), + ml_eval(Eng,wsseq(A),[cell(mat,_)],[B]). + +persist_item(mx(X),B) :- + mx_size_type(X,Size,Type), + ( Size=[1], Type=double + -> convert_mx(float,X,B) + ; Type=char + -> convert_mx(atom,X,AA), B= `AA + ; convert_mx(mat,X,B) + ). + +persist_item(A,A) :- atomic(A). + + +/* ----------------------------------------------------------------------- + * From here on, we have straight Matlab utilities + * rather than basic infrastructure. + */ + + + +% for dealing with option lists + +%% mhelp(+Name:atom) is det. +% Lookup Matlab help on the given name. Equivalent to executing help(`X). +mhelp(X) :- ml_exec(ml,help(q(X))). + + + +%% compileoptions(+Opts:list(ml_options), -Prefs:ml_expr(options)) is det. +% +% Convert list of option specifiers into a Matlab expression representing +% options (ie a struct). Each specifier can be a Name:Value pair, a name +% to be looked up in the optionset/2 predicate, a nested list of ml_options +% compileoptions :: list (optionset | atom:value | struct) -> struct. +% NB. option types are as follows: +% == +% X :: ml_options :- optionset(X,_). +% X :: ml_options :- X :: ml_option(_). +% X :: ml_options :- X :: list(ml_options). +% X :: ml_options :- X :: ml_expr(struct(_)). +% +% ml_option(A) ---> atom:ml_expr(A). +% == +compileoptions(Opts,Prefs) :- + rec_optslist(Opts,OptsList), + Prefs=..[prefs|OptsList]. + +rec_optslist([],[]). +rec_optslist([H|T],L) :- + ( % mutually exclusive types for H + optionset(H,Opts1) -> rec_optslist(Opts1,Opts) + ; H=Name:Value -> Opts=[`Name,Value] + ; is_list(H) -> rec_optslist(H,Opts) + ; /* assume struct */ Opts=[H] + ), + rec_optslist(T,TT), + append(Opts,TT,L). + +rtimes(X,Y,Z) :- + ( var(X) -> X is Z/Y + ; var(Y) -> Y is Z/X + ; Z is X*Y). + + +% Execute several plots as subplots. The layout can be +% vertical, horizontal, or explicity given as Rows*Columns. + + +% mplot is a private procedure used by multiplot +mplot(subplot(H,W),N,Plot,Ax) :- ?? (subplot(H,W,N); Plot), Ax===gca. +mplot(figure,N,Plot,Ax) :- ?? (figure(N); Plot), Ax===gca. + +%% multiplot(+Type:ml_plot, +Cmds:list(ml_expr(_))) is det. +%% multiplot(+Type:ml_plot, +Cmds:list(ml_expr(_)), -Axes:list(ml_val(handle))) is det. +% +% Executes plotting commands in Cmds in multiple figures or axes as determined +% by Type. Valid types are: +% * figs(Range) +% Executes each plot in a separate figure, Range must be P..Q where P +% and Q are figure numbers. +% * vertical +% Executes each plot in a subplot; +% subplots are arranged vertically top to bottom in the current figure. +% * horizontal +% Executes each plot in a subplot; +% subplots are arranged horizontally left to right in the current figure. +% * [Type, link(Axis)] +% As for multplot type Type, but link X or Y axis scales as determined by Axis, +% which can be `x, `y, or `xy. +% +% Three argument form returns a list containing the Matlab handles to axes objects, +% one for each plot. +multiplot(Type,Plots) :- multiplot(Type,Plots,_). + +multiplot([Layout|Opts],Plots,Axes) :- !, + multiplot(Layout,Plots,Axes), + member(link(A),Opts) -> + ?? (linkaxes(Axes,`off); hide(linkaxes(Axes,`A))) + ; true. + +multiplot(figs(P..Q),Plots,Axes) :- !, + length(Plots,N), + between(1,inf,P), Q is P+N-1, + numlist(P,Q,PlotNums), + maplist(mplot(figure),PlotNums,Plots,Axes). + +multiplot(Layout,Plots,Axes) :- + length(Plots,N), + member(Layout:H*W,[vertical:N*1, horizontal:1*N, H*W:H*W]), + rtimes(H,W,N), % bind any remaining variables + numlist(1,N,PlotNums), + maplist(mplot(subplot(H,W)),PlotNums,Plots,Axes). + + +%% optionset( +Key:term, -Opts:list(ml_options)) is semidet. +% +% Extensible predicate for mapping arbitrary terms to a list of options +% to be processed by compileoptions/2. + +%user:portray(A|B) :- print(A), write('|'), print(B). +user:portray(Z) :- mlWSNAME(Z,N,ID), format('<~w:~w>',[ID,N]). + +prolog:message(ml_illegal_expression(Expr),[ 'Illegal Matlab expression: ~w'-[Expr] | Z], Z). +prolog:message(mlerror(Eng,Msg,Cmd),[ +'Error in Matlab engine (~w):\n * ~w\n * while executing "~w"'-[Eng,Msg,Cmd] | Z], Z). + + +%% pl2tex(+Exp:tex_expr)// is det. +% +% DCG for texifying expressions (useful for matlab text) +pl2tex(A=B) --> !, pl2tex(A), "=", pl2tex(B). +pl2tex(A+B) --> !, pl2tex(A), "+", pl2tex(B). +pl2tex(A-B) --> !, pl2tex(A), "-", pl2tex(B). +pl2tex(A*B) --> !, pl2tex(A), "*", pl2tex(B). +pl2tex(A.*B) --> !, pl2tex(A), "*", pl2tex(B). +pl2tex(A/B) --> !, pl2tex(A), "/", pl2tex(B). +pl2tex(A./B) --> !, pl2tex(A), "/", pl2tex(B). +pl2tex(A\B) --> !, pl2tex(A), "\\", pl2tex(B). +pl2tex(A.\B) --> !, pl2tex(A), "\\", pl2tex(B). +pl2tex(A^B) --> !, pl2tex(A), "^", brace(pl2tex(B)). +pl2tex(A.^B) --> !, pl2tex(A), "^", brace(pl2tex(B)). +pl2tex((A,B))--> !, pl2tex(A), ", ", pl2tex(B). +pl2tex(A;B)--> !, pl2tex(A), "; ", pl2tex(B). +pl2tex(A:B)--> !, pl2tex(A), ": ", pl2tex(B). +pl2tex({A}) --> !, "\\{", pl2tex(A), "\\}". +pl2tex([]) --> !, "[]". +pl2tex([X|XS]) --> !, "[", seqmap_with_sep(", ",pl2tex,[X|XS]), "]". + +pl2tex(A\\B) --> !, "\\lambda ", pl2tex(A), ".", pl2tex(B). +pl2tex(@A) --> !, "@", pl2tex(A). +pl2tex(abs(A)) --> !, "|", pl2tex(A), "|". +pl2tex(A) --> {atomic(A)}, escape_with(0'\\,0'_,at(A)). +pl2tex(A) --> + {compound(A), A=..[H|T] }, + pl2tex(H), paren(seqmap_with_sep(", ",pl2tex,T)). +