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Abstract
This paper presents a study on intonation and intonation drift in un-
accompanied human singing and proposes a simple intonation memory
model that accounts for many of the effects observed. Singing ex-
periments were conducted with 24 singers of varying ability under 3
conditions. Several summary measures of pitch and interval accuracy
are revised and metrics for intonation drift and pitch stability are pro-
posed. A median absolute drift of 11 cents was observed, which was
significant in 22% of recordings. Drift magnitude did not correlate with
other measures of singing accuracy, singing experience or with the pres-
ence of conditions tested. Furthermore, it is shown that neither a static
intonation memory model nor a memoryless interval-based intonation
model can account for the accuracy and drift behaviour observed. The

proposed causal model provides a better fit.

PACS numbers: 43.75.Bc, 43.75.Rs, 43.70.Fq



I. INTRODUCTION

Unlike other musical instruments, the vocal apparatus is common to all human beings,
and in every known human culture people use it to make music: singing is one of the
human universals (Brown, 1991) (as reproduced by Pinker (2002)). There is good evidence
that vocal music was practiced even in prehistoric human societies, and it might even have
preceded language (Mithen, 2007). Yet science is only beginning to understand the control
processes involved in human singing. This paper is aimed at providing some insights into
a parameter in singing that is crucial to many singing styles but has so far received little
academic attention: intonation.

Intonation is defined as “accuracy of pitch in playing or singing” (Swannell, 1992), or
“the act of singing or playing in tune” (Kennedy, 1980). Both of these definitions imply
the existence of a reference pitch, which could be internal or external. We treat intonation
as the signed pitch difference relative to the reference pitch, measured in semitones on an

equal-tempered scale:

pitch difference = 12 log, ffo , (1)

ref

where fj is the measured fundamental frequency and f,. is the fundamental frequency of the
reference (“correct”) pitch. (Note that we assume pitch, a perceptual quantity, is adequately
represented by its physical correlate, fundamental frequency, for harmonic sounds such as
singing (Vurma and Ross, 2006).) As pitch differences are generally small, we often use the
unit cent, equal to a hundredth of a semitone in equal temperament. Semitones and cents
are commonly used in research on pitch (e.g. Pfordresher and Mantell, 2012) because they
are easier to interpret in musical terms than raw frequency differences, and the logarithmic

frequency scale corresponds more closely to pitch perception than a linear scale does.
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For this paper, we use as our reference tuning system equal temperament with A4 tuned
to 440Hz. Then, adopting the MIDI pitch scale, which assigns an integer for each note of
the chromatic scale, with middle C assigned 60 and A4, 9 semitones higher, being assigned

69, we define semitone pitch p as

/

p =69+ 12log, EOO' (2)

Thus we can map any fundamental frequency to a pitch in semitones. In this system, a
nominal G has a frequency of almost exactly 392Hz, and hence a note G sung at 401Hz
would have an intonation difference of 1200 log, % ~ 39 cents. We will see in Section IV
that for our unaccompanied singing data, neither the tuning system nor the reference pitch
is known, but that for the purposes of our study we can assume equal temperament at an
estimated tuning frequency, without substantially affecting our results.

The remainder of the paper is structured as follows. Section II discusses existing work
related to singing intonation and musical memory. Section III describes our intonation
experiments conducted with a group of singers of different abilities. Section IV defines
and illustrates several metrics of singing accuracy and drift. In the results section (V) we
show what intrinsic and external factors influence our measurements. The following section
(VI) introduces a simple model of tonal memory which is able to account for the intonation

stability and drift we observed. Section VII provides a discussion of achievements and future

work, and a summary of our conclusions is found in section VIII.

II. PREVIOUS WORK

Only since the advent of precise pitch analysis in the form of the tonoscope (Seashore,
1914) has it been possible to study intonation quantitatively. Carl Seashore’s Psychology
of Music (Seashore, 1967, originally published in 1938) already featured analyses of vibrato
based on this technique. Since then, less laborious signal processing methods for pitch
analysis have been devised (e.g. Schroeder, 1968; Markel, 1972; de Cheveigné and Kawahara,

2002). These methods, along with computer programs like Praat (Boersma, 2002) and the
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advent of fast, affordable computers have made intonation analysis feasible to anyone with
a microphone and a computer.

Recently, progress has been made on quantifying differences in intonation between
singers. In the music informatics domain, singing tuition applications (e.g. Cano et al.
(2012)) have driven the development of singing assessment methods that often focus on in-
tonation aspects (for an overview, see Molina (2012)). In the music psychology literature,
the phenomenon of so-called “poor singers” has gained some interest (e.g. Berkowska and
Dalla Bella, 2009; Dalla Bella and Berkowska, 2009; Dalla Bella et al., 2007; Pfordresher
et al., 2010).

Vurma and Ross (2006) investigated professional singers’ ability to sing three intervals
(minor second, tritone and perfect fifth), and reported average standard deviations of 22
cents in interval size, and 34 cents in absolute pitch relative to a tuning fork reference. Im-
mediately after singing, the singers were unable to judge whether their intervals were out
of tune, but after listening to a recording of their singing, their judgements were not signif-
icantly different from other expert listeners. Judgements of out of tune singing correlated
with pitch errors, but errors of even 40 cents were not reliably judged out of tune by the
majority of listeners.

Dalla Bella et al. (2007) compared occasional and professional singers performing a well-
known melody in a free memory call scenario. Two groups of occasional singers made errors
in singing intervals of around 0.6 and 0.9 semitones on average, while professional singers’
errors were only 0.3 semitones. A correlation with tempo was also observed, and a second
experiment was performed, which confirmed that errors decreased significantly when the
same singers sang more slowly. In a further study Dalla Bella and Berkowska (2009) used
both free recall and repetition paradigms to characterise poor singing in terms of timing
accuracy, relative pitch (interval) accuracy and absolute pitch accuracy, and found that
poor singers could have deficits in any one or any combination of these attributes.

Pfordresher et al. (2010) distinguish the accuracy (ability to reproduce a target pitch)

and precision (consistency in repeated attempts to produce a pitch) of singers in order
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to classify “poor” singers. They found that the majority (56%) of singers were imprecise
(standard deviation of pitch error greater than one semitone), but only 13% of singers were
inaccurate (absolute value of average error greater than 1 semitone). It was also observed
that errors were greater for the imitation task than for a recall task. In our study, we use
their definition of poor singers in order to exclude some singers (Section III), and we discuss

their metrics for local intonation performance in Appendix A.

Most existing research on intonation is concerned with a fixed tuning system, but some
authors have also studied temporal changes in reference pitch, which we call intonation drift.
Howard (2007) and Devaney et al. (2012) investigated pitch drift in unaccompanied vocal
ensembles. In such a context, physics predicts that perfect consonance conflicts with pitch
stability over time. The idea goes back at least to the 16th century, when music theorist
Giovanni Benedetti wrote a piece of three-part singing designed to result in various amounts
of pitch drift. The evidence from the new studies for a reliably predictable effect is not
entirely conclusive, partly due to small sample sizes: Devaney et al. (2012) report only
negligible effects on the original Benedetti composition, while Howard (2007) reports drifts

roughly in line with predictions on specially composed new pieces.

Far from being a purely theoretical concept, intonation drift is a daily practical concern
of choir conductors, as they rehearse and perform pieces that are not designed to produce
intonation drift (assuming benign composers). Conductors and singers have put forward
various hypotheses in discussion forums (e.g. Barbershop Tuning Discussion, 2012) and in
music tutorials (Crowther, 2003), attempting to explain the phenomenon of drift, but these

explanations all still await empirical testing.

This study investigates intonation drift in unaccompanied solo singing, without further
constraints such as consonance with other singers. In contrast with some of the work de-
scribed above, the singers in our experiment refer only to their own memory to stay in tune,
i.e. the pitch reference is solely internal. It is well-known among singing teachers that in
similar situations (such as unaccompanied sight-singing practice) even accurate singers tend

to drift. Therefore, our work investigates both singing accuracy and intonation drift with a
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FIG. 1: “Happy Birthday” in F-Major

particular emphasis on understanding how they are related.

II1. METHOD

A. Participants

A total of 31 participants from the UK and Germany took part in the experiment. They
were recruited from musicology students, office colleagues, lab members and the choir of the
Wolfson College in Cambridge UK. Three of the subjects were unable to sing the requested
melody and were excluded from the study. Also excluded were four further participants, who
were detected as outliers and hence classified as “poor” singers, an established phenomenon
(Pfordresher and Brown, 2007). The outlier classification was performed using multivariate
outlier detection (Filzmoser et al., 2005) on two singer-based metrics: mean absolute interval
error (see Section IV.C) and ratio of intervals within a semitone of the true interval. After
these exclusions, 24 subjects remained in the study. The age of the participants ranged
from 13 to 62 with a median of 32.5 years (mean: 34.5). The gender ratio was imbalanced
with 6 females and 18 males in the sample. The musical experience of participants was
wide-spread. Fourteen singers considered themselves amateur musicians, 9 professionals or
semi-professionals, and 1 reported no musical background. Thirteen participants reported
“a lot” of singing experience, 9 some or no experience, one subject sings on a professional
level, and one did not respond. Eleven subjects are still active in some choir, while 8 had
previous choir experience, and 5 have never sung in a choir (see Table I). Since we had a
large share of male participants, baritone was the most common voice type with a total of

13 subjects, followed by soprano with 6 subjects.
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B. Material

Since we chose to employ a free memory call paradigm with a variety of subjects from
two different countries, the choice fell on “Happy Birthday”, probably the single best-known
and most wide-spread song in the world. Happy Birthday cannot be considered a very easy
song, since it contains a variety of different intervals, some of them being large jumps (see
Fig. 1). Hence it poses some intonation challenges even for experienced singers. The ambitus
is exactly one octave using a full major scale from dominant to dominant an octave higher.
The song is written in 3 time, beginning with a two note upbeat and comprising a total of

25 notes in 4 phrases of 6, 6, 7, and 6 notes each.

C. Procedure

Each participant sang a total of 9 renditions of “Happy Birthday”, in three recordings
of three runs each. Details are given below. For a particular recording each participant was
asked to sing three consecutive runs of “Happy Birthday”. The participants could choose
the starting pitch at their own comfort. They were provided with a click track of moderate
tempo (96 bpm) and instructed to wait four bars before beginning to sing. Subjects were
instructed to sing the syllable “na” throughout. Subjects were recorded using Audacity 2.0
running on a Windows Laptop or a MacBook Pro. A conventional headset (Logitech USB
Headset 390) functioned both as microphone and headphones, through which participants
were provided with the click track and the noise in the Masked condition (see below).

Three such recordings were made of each participant to test three different conditions,

which differed by the way the second run of “Happy Birthday” was performed.
Normal. The participant sang three renditions of “Happy Birthday” as described above.

Masked. Pink noise at a moderate sound pressure level of about 70-80 dB SPL was applied

over the headphones during the second of three renditions of “Happy Birthday”.

Imagined. The participant was asked to remain silent during the second rendition of



“Happy Birthday”, while imagining to sing, and to resume singing at the start of

the third rendition.

The Masked condition diminishes auditory feedback, making it harder for the participants
to hear their own singing, while the Imagined condition removes both auditory and kines-
thetic feedback, i.e. the participants can neither hear their singing nor feel singing-induced
movements and the states of their vocal cords (unless they moved their vocal cords without
singing).

The sequence of conditions was held constant (in increasing order of difficulty). In each
condition, subjects sang 75 notes except in the Imagined condition with only 50 notes. Most
of the German singers sang the German version of the melody which divides note 17 into
two syllables at the same pitch; this extra note was disregarded in the analysis. One singer

consistently missed note 19.

D. Analysis

The recorded songs were analysed using a semi-automatic pitch tracking process. The
resulting note tracks were then analysed using R (2008). Onsets and offsets of the
steady states of note events were annotated using Sonic Visualiser 2.0 (Cannam et al.,
2010) by the second author (kf). Automatically calculated onsets and offsets were ad-
justed manually, and the resulting annotations were fed into customised pitch tracking
software (http://code.soundsoftware.ac.uk/projects/yintony [will be made available
upon publication]), which is based on the YIN algorithm (de Cheveigné and Kawahara,
2002). In order to obtain note-wise pitch estimates we take the median pitch estimate over
the annotated duration of the note, as illustrated in Figure 2. A total of 4789 notes in 72
recordings were collected this way:.

To test the reliability of the note timing annotations, 12 randomly selected blocks (of
3 runs) were also annotated manually by the other two authors and submitted to the note

tracking algorithm. A comparison of onset and offset annotations reveals a different strategy



56 ! R —
55
54 .
53
52

MIDI pitch

51 -
50 !
49 |

48 - ‘ VoW ' ' Vo
T T f T T
11.5 12.0 12.5 13.0 135

time

FIG. 2: Example pitch track (grey crosses) and note-wise pitch estimates (horizontal bars),

calculated as medians between annotated note boundaries (vertical dashed lines).

of coder kf compared to the other two: kf consistently placed onsets later and offsets earlier
in the sound event, capturing only the steady state portion of the note. A comparison of the
different resulting pitch tracks revealed no significant differences for the note pitch estimates.
The average difference of the two other coders to the first coder was less than 0.2 cents, and
only 1.4% of F0-differences were larger than 5 cents, showing that the median method of

determining the pitch is robust against interpretations of note onsets and offsets.

IV. METRICS OF ACCURACY AND DRIFT

In this section we introduce how we measure intonation in terms of interval and pitch
error, singer-wise performance measures and drift. We start by defining interval and pitch
errors for individual notes and illustrate these using some examples from our data. Then

we introduce measures of intonation accuracy and drift based on the error definitions.

A. Interval Error

The distance between two pitches is referred to in musical terms as an interval, corre-

sponding in physical terms to the ratio of the constituent fundamental frequencies. For the
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FIG. 3: Interval errors in semitones relative to the score, using equal temperament. The
boxes indicate the 1st, 2nd (median) and 3rd quartiles, the whiskers extend to ‘the most
extreme data point which is no more than 1.5 times the interquartile range’ (R software

Team R Development Core (2008)). Outliers are omitted for clarity of display.

sake of this paper, we express the interval leading to the i*® pitch p; (see Eq. (2)) as the
signed distance Ap; = p; — p;_1 in semitones between the current and the preceding note.

The interval error of the observed interval Ap; can then be written as

e = Ap; — ApY, (3)

)

where Ap? is the nominal interval in semitones using equal temperament (ET). Interval error
is easy to define (unlike pitch error, see Section IV.B). Figure 3a shows a box plot of interval
error by nominal interval. A first observation is that the two largest upward intervals of
8 semitones (minor sizth) and 12 semitones (octave) are significantly flat, i.e. smaller than
expected (one sample t test (£(186) = —6.96, £(183) = —9.09, both p < 0.0001). This
phenomenon is called compression and is well known in the literature (Pfordresher et al.,
2010).

A more puzzling case is the error at the nominal interval of zero semitones. In our data,
this so-called prime interval, a repetition of the same pitch, is systematically sharp, i.e. sung

too high (one sample ¢ test: t(753) = 17.96, p < 0.0001) by approximately 0.29 semitones.
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FIG. 4: Example of pitch error estimation, showing pitch measurements p; (empty bullets)

and local tonic estimates ¢; (filled) using a linear fit. The stems represent the pitch error e;.

Figure 3b suggests two possible explanations. Notice that all zero-semitone intervals occur
between the first and second note of each phrase; they are the two notes that correspond each
time to the lyric ‘hap-py’. A first hypothesis, then, is that the reason for the interval being
sung sharp is that its first note is usually sung flat simply by virtue of being the starting
note after the short pause between phrases, where the voice rests. A second hypothesis,
that the second note is sharp in preparation for an upward interval occurring after the note,
cannot explain the sharpness of note 21, which is followed by a downward interval. However,
to test which hypothesis explains the data better, we need the concept of note intonation

error, which is the topic of the next paragraphs.

B. Pitch error

Defining pitch error is not as straight-forward as defining interval error, because in our
unaccompanied singing data we have no external reference pitch against which intonation
could be measured. Instead, the tuning emerges as singers sing and may change over the
course of the song. As a result, no single best way of defining pitch intonation is possible.

In order to obtain a reference we will use a linear fit to the local tonic estimate, as
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FIG. 5: Pitch errors with respect to linear prediction (run-wise).

explained below. For the measured pitch p; of the i*" note we can find an estimate
ti = pi — S (4)

of the implied tonic pitch by subtracting from p; the nominal pitch s; relative to the nominal
tonic. These nominal pitches for “Happy Birthday” are given in Figure 5b. For example,
if the first note in a run is sung at p; = 50.45 (see Eq. 2), then the implied tonic is
t; = 50.45 — (=5) = 55.45 because the first note is 5 semitones below the tonic. This
is shown in Figure 4, which also provides an intuitive illustration of the next steps: for
every run we fit a line to the ¢;, © = 1,...,25 with note number ¢ as independent variable,
obtaining fitted values ¢}, i = 1,...,25. We define the note error ¢; as the difference between

the implied tonic and the fitted tonic:

The individual errors are represented by the stems between the linear fit and the filled
markers in Figure 4.

With the ability to measure the pitch error, we can now investigate the relative ef-
fects of phrase beginnings and note jump preparation, as hypothesised in Section IV.A.

A linear model predicting pitch error by the independent variables is-beginning-of-phrase
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and interval-to-next-note shows that both correlate significantly (F'(4667) = 254.94, both
p < 0.0001) with interval error: beginning of phrase ‘makes’ notes about 21 cents flat. On
average, each signed semitone in the following interval leads to a sharpening (or flattening,
in case of downward intervals) of 1.3 cents, i.e. 12 x 1.3 = 15.6 cents in the case of the octave
jump, (—4) x 1.3 = —5.2 cents in the case of a downward major third. Together, they
account for 9.8% of the variance (as measured by R?). Hence, neither hypothesis can be
rejected—it is likely that both influence intonation. The individual models explain less vari-
ance: beginning of phrase explains 3.8% (F(4668) = 182.3, p < 0.0001); following interval
explains 6.2% (F'(4773) = 316.8, p < 0.0001).

Note that neither interval nor pitch error can be used directly to judge the value or
musical correctness of a sung note. Rather than a value judgement, ‘error’ indicates devia-
tion from the mathematically defined equal temperament grid. While using other reference
temperaments would be possible, they do not provide substantially differing errors, which
is in line with previous results by Devaney et al. (2011). In fact, in terms of mean absolute
pitch error (see Section IV.C), equal temperament is a significantly better hypothesis than
just intonation (¢#(4774) = —14.1927, p < 0.0001), but the actual difference is very small

(1.3 cents).

C. Metrics of singing accuracy and precision

Pfordresher et al. (2010) define four different metrics to summarise singing precision and
accuracy in a recording or for a singer. However, in applying the measures to our data we
encountered several problems arising from the definitions, both in terms of their intuitive
understanding (the names are misleading) and power to express features of singing on our
data (they obfuscated relevant information). Detailed explanations and definitions are given
in Appendix A. In the following we therefore propose the use of alternative, more intuitive

summary metrics.

A measure that combines pitch accuracy and precision is computed by averaging absolute
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differences between rendition and target, which reflects intonation skill. Hence, we define

the mean absolute pitch error (MAPE) as:

M
1
MAPE = M;yeiy (6)
Similarly, our alternative measure to Pfordresher’s interval accuracy, the mean absolute
interval error (MAIE) is defined as:

1
M—-1

5™ (7)

NE

MAIE =

=2
This measure is always non-negative, hence no tendency to sing larger or smaller intervals is
reflected here, but it is in our view a more natural way to indicate how accurately intervals

are sung.

D. Metrics of pitch drift

Each of our recordings has a first and a third run of “Happy Birthday”, each consisting
of 25 notes. We estimate drift based on pitch differences between corresponding notes in
these two runs of the song. Hence, for a particular recording we define pitch drift D as the

mean difference

1 25
D= % ;pi—i—SO — Di- (8)

The drift metric D conveys information about the magnitude and direction of drift. In order
to consider only the magnitude we use the metric absolute drift, i.e. |D)|.

In the more general case without repeated sequences drift can be estimated as the slope
of a linear model predicting the local tonic estimates ¢; with the note numbers 1,...,75 as the
covariate. We have already used the same technique to calculate pitch error (Section IV.B).
As we will see in the following section, this linear drift, denoted Dy, is very highly correlated
with D, so for most of our analyses we will use only D and |D|. From the model used to
determine Dy for a particular recording we also calculate the associated p value, which is

an indicator of the significance of the drift effect.
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FIG. 6: Distributions of singing accuracy metrics over all conditions and participants.

V. RESULTS

The metrics summarising accuracy and drift defined in Section IV allow us to analyse
recordings and assess the correlations with test condition (Normal, Masked, Imagined) and
participant factors such as choir experience. In order to prepare for the correlation analyses,

we first present the distributions of recording-wise summary statistics themselves.

A. Distributions of accuracy and drift

We calculated the mean absolute pitch error (MAPE, see Section IV.C) for each of the
72 recordings. Figure 6a provides a histogram of the distribution of MAPE, showing that the
average error magnitude is less than 0.5 semitones for all recordings, with most recordings
having a MAPE of around 0.2 semitones (mean: 0.189; median: 0.187; std. dev.: 0.051).
While this result shows that the singing in most recordings was systematically compatible
with equal temperament, it is also clear that 0.2 semitones (20 cents) is slightly larger
than the just noticeable difference, which for typical singing frequencies up to 800Hz is
usually below 1%, i.e. below 17 cents (Henning, 1955). The distribution of MAIE is similar,
with slightly larger magnitudes of around 26 cents (mean: 0.263; median: 0.267; std. dev.:
0.069). Turning to Table II, we observe that MAPE and MAIE are indeed correlated almost
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deterministically across recordings (Spearman rank correlation of 0.93). What is remarkable
is that neither significantly correlates with drift or absolute drift. This suggests that the
capability of remaining in a key does not depend on the ability to sing individual notes
accurately. This conclusion is valid only if we can show that the drifts we observed are
unlikely to stem from measurement error. The question is hence whether the drifts we do
observe are statistically significant.

First, we consider the distribution of drift over recordings. A histogram of drift D is
shown in Figure 6¢ (in semitones, mean: 0.074; median: 0.069; std. dev.: 0.169) and of
linear drift Dy, in Figure 6d (in cents, mean: 0.097; median: 0.096; std. dev.: 0.371). The
absolute intonation drift |D| (in semitones, mean: 0.138; median: 0.111; std. dev.: 0.122)
has a mean of only 0.138, which is smaller than the mean MAPE (0.187). That is, in our
sample the expected drift magnitude over 50 notes is smaller than the expected absolute
error per note.

In order to test whether the drifts are a real effect rather than measurement noise, we
use the p value of the linear fit to the ¢; values, as described in Section IV.C. Figure 7 plots
the p value against linear drift Dy. Of the 72 recordings, 16 (22%) have a p value below the
line of confidence level 0.01, that is: they show significant drift. (Relaxing the confidence
level to 0.05, significant drift occurs in 27 recordings, 38%.) We conclude that drift is indeed
a real effect. Hence, the lack of correlation between our measures of drift on the one hand
and MAIE and MAPE on the other is a non-trivial finding.

A further, unexpected discovery is that—in our dataset—the vast majority of recordings
with significant drift actually drift upwards. This is surprising especially because many choirs
suffer from the opposite phenomenon (they tend to go flat).

In summary, despite significant drift, drift effects are unrelated to the magnitude of pitch
error and interval error. This is all the more surprising given that the magnitudes of MAPE
and MAIFE are so widely spread. For example, recordings with MAPFE values as disparate
as 0.1 semitones and 0.3 semitones can show very similar drift magnitudes near to zero. The

relative independence of drift and local error is further emphasised by the fact that all have
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FIG. 7: Significance of drift, showing p values (logarithmic scale) against Dy, for each

recording. p values below 0.01 are considered significant.

absolute values in the same order of magnitude, which is incompatible with an intonation
model in which pitch errors propagate, as we will explore in Section VI. First, however, we

investigate how different participant factors and singing conditions influence the results.

B. Participant factors

In order to determine whether knowing the singer constitutes a significant advantage
to predicting MAPE, MAIE, D or |D| in a recording we construct linear models predicting
these metrics with singer as a (nominal) independent variable. The singer’s identity is indeed
an excellent predictor for the MAPE and MAIE measures, explaining 85% (F'(23) = 12.19,
p < 0.0001) and 81% (F(23) = 8.89, p < 0.0001) of the variance between recordings.
Predicting drift is much less effective with less variance explained and higher p values (in
the case of D: 48%, F(23) = 1.89, p = 0.03; in the case of Dy: F(23) = 2.75, p = 0.0015),
suggesting slightly lower predictive power. For absolute pitch drift | D| prediction completely
fails (only 22% of variance explained, F'(23) = 0.60, p = 0.91). In short, though knowing the
singer is likely to provide some information on the drift performance, the singers differ much

more in terms of their ability to accurately sing single notes than in terms of characteristic
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drift direction or magnitude. This result consolidates the qualitative difference between

measures of accuracy and drift found in Section V.A.

We also investigated the relation between the quantitative intonation metrics and the
singers’ self-assessment, taken from a survey they filled in. Three self-reported metrics
take values from 1 to 5: singing ability (poor to very high), singing experience (none to
professional) and choir experience (none to still active), and musical background (none to
professional) takes values from 1 to 4. Table II shows the Spearman (i.e. rank) correlation
values between all metrics, with significant correlations (p < 0.01) highlighted in bold print.
We observe that most of the self-reported measures are inter-correlated, with the only ex-
ception of singing experience/musical background. In fact, the self-reported general level of
musical background does not correlate with any of the quantitative measures either. Further
study may reveal whether singing skills are indeed partially independent of general levels of

musicality, as has been suggested before (Hutchins and Peretz, 2012).

However, two kinds of self-assessment ratings, singing ability and choir experience, do
significantly correlate with our quantitative measures MAPFE and MAIE. All of the four
combinations have absolute correlations > 0.37. While the correlation of accurate singing
and choir membership is expected, the singers’ assessment of their singing ability, too, is in

line with our measurements of intonation accuracy.

As we have mentioned in Section V.A, we observed little correlation between the mea-
sures of accuracy, MAPE and MAIE, and measures of drift, D and |D|. In fact, the only
two metrics that correlate with drift D are those that are indeed directly related: linear
drift, which is a different measure of the same phenomenon, and absolute drift |D|, which
correlates because most of the D values are actually positive, i.e. they coincide with |D|.
Again, other than these direct connections, no other metrics correlate with either D or |D],
in particular, none of the self-reported measures, including singing experience and choir

experience.
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C. Treatment factors

To see whether the three conditions (Normal, Masked, Imagined, see Section I1I) have an
influence on our measures of accuracy and drift, an analysis of variance was conducted. Since
all four accuracy and precision variables are not normally distributed (right-skewed), a set of
non-parametric Kruskal-Wallis tests was performed, but no significant differences between
conditions and runs were found (MAPE: x?(2) = 0.89, p = 0.64; MAIE: x?(2) = 2.43,
p = 0.30; D: x*(2) = 2.51, p = 0.28; |D|: x*(2) = 0.42, p = 0.81). Even the middle
run in the Masked condition did not significantly deteriorate singing intonation, in contrast
with some other findings (e.g. Miirbe et al., 2002), but in line with others who used low-
level noise similar to that in our experiments (e.g. Pfordresher and Brown, 2007). One
observation during the experiments was that singers tend to sing louder in the Masked
condition, compensating for the deprived auditory feedback (the so-called Lombard effect,

Lombard, 1911), which is likely to have made the auditory feedback inhibition ineffective.

In summary, the three conditions had little effect on the singers we tested. Neither their

singing accuracy nor their tendency to drift were significantly affected.

D. Recapitulation

The various results from this section support the overarching impression that intonation
drift is relatively independent of singers’ capability to sing individual notes accurately. About
22% of our recordings show a significant difference (drift) between the first and third run of
“Happy Birthday”. The range of drifts, however, is small; for example, the mean absolute
interval error is on the same order of magnitude as the drift over as many as 50 notes. Thus
singers must possess a strong intonation memory which enables them to stay in tune. The

next section proposes a model of intonation memory that is compatible with our findings.
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VI. A MODEL FOR INTONATION STABILITY

In this section we consider the question: how do singers stay in tune at all? While
significant pitch drift was detected in many recordings, the tuning difference over three runs
of “Happy Birthday” stayed remarkably small, despite large intonation errors on individual
notes (see Section V.A). It appears that even amateur singers possess a mechanism that
prevents them from chaotically drifting out of tune.

This stabilising mechanism, we hypothesise, is mainly based on the short-term memory
of a pitch reference. Before we introduce how we model this memory, we consider a basic

model of pitch production.

A. Pitch Production under Constant Reference Pitch

A simple pitch production model can be built on the assumption that the intonation of
a note consists mainly of two components: a reference pitch r, and the score information
relative to that reference pitch. We choose to encode the melody notes in semitones relative
to the tonic. (This is arbitrary; any other reference yields an equivalent model.) Assuming
an additive Gaussian pitch error ; ~ N(0,0;), the pitch production process can then be
written as

Pi =T+ 8 + &, (9)

where p; is the pitch of the i*" note, r is the reference pitch and s; is the fixed score
information given relative to the reference pitch. The error ¢; models all additional noise,
e.g. from physiological effects.

To illustrate the model, a baritone can sing comfortably in the pitch range around
G3, so let us assume a reference pitch » = 55.43, corresponding to the tonic of “Happy
Birthday”. The third note of “Happy Birthday” (‘hap-py birth-...") is three semitones
below the tonic, i.e. the score value is s3 = —3. Then the desired sung note would be
r + s3 = 55.43 — 3 = 52.43. This process clearly captures important aspects of the pitch

production process. However, its assumption of a static reference pitch would require the
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singers to have perfect pitch memory, which, in general, is not the case.

B. Pitch Production Model with Imperfect Pitch Memory

The pitch drifts we observe in our data (see Section V.A) clearly indicate that singers do
not retain a fixed reference pitch or tonality; rather, they slightly drift up and down while
they sing, which indicates imperfect pitch memory. In order to capture imperfect pitch
memory, we have to make adjustments to the model presented in Eq. (9) above.

Since the score notes s; are fixed, we can extend the equation most naturally by modelling

the tuning pitch r as a time-varying process r;, i.e. the production equation now becomes

pi =T+t S+ & (10)

We assume that the process r; is causal, i.e. it only depends on past events at times j =
1,...,2—1. In particular, a singer cannot predict the time-varying reference pitch from future
local pitch deviations, so a linear model like the one used for the calculation of pitch error
(see Section IV.B and Figure 4) with note numbers as covariates is not feasible. Instead, we

assume that r; is a causal smoothing process defined as the running mean

ri = pri-1 + (1 — p) (i1 — si-1) (11)

of the memory reference r;_; and a point-estimate of the reference pitch (p;—1 — s;_1), where
w € [0,1] is a parameter relating to the strength of memory. By calculating the running
mean the influence of past notes decays geometrically. The recursive equation (11) is a
simplistic model of a tuning memory process that pulls the reference pitch in the direction

of the observed error €;_; = (p;—1 — $;—1) — Ti—1 at every step and can be re-written as

Ty =Ti_1+ (1 - N)ei—l- (12)

A similar model, based on updated tuning histograms, was proposed by Ryynénen (2004)
to deal with the transcription of monophonic melodies in an engineering context. Since no

reference pitch is available before the first observation, Eq. (11) is not defined for ¢ = 1,
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i.e. we have a cold start problem. We choose the first phrase (six notes) to initialise the
smoothed reference pitch estimate r* = %Zti = %Z(pi — s;). The first six notes in every
recording are then excluded from any further analysis of this model, and the recursive update
(11) is applied from ¢ = 7. Figure 8 shows the local and smoothed reference pitches for an

example recording under the Normal condition.

pitch
53.4 53.6 53.8 54.0 54.2 544

note

FIG. 8: Example of observed tonality estimates ¢; (marked as +) and the estimated

reference pitch r; (filled bullets) with parameter p = 0.85.

C. Boundary models: no memory and absolute memory

The extreme cases © = 0 and u = 1 generate models with no memory and perfect
memory, respectively. If ;4 = 0, no memory is used to predict the current note except for
the previous note realisation, i.e. the reference pitch is simply r; = (p;_1 — $;_1), and hence

pi = pic1 + (si — Si—1) +€i
———

interval

That is, pitch production is based on the interval from the previous note realisation.
This also means that errors from the previous note are fully passed on. Mathemat-
ical formalisation confirms that with an arbitrary starting pitch py the pitch variance

Var[p; — po] = Zélear[Apj] is the sum of the interval error variances (assuming that
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intervals are independent). At the average observed interval variance of Var[Ap;] = 0.147
the expected variance of two notes spaced 50 notes apart is 50 x Var[Ap;] = 7.36. This
corresponds to a standard deviation of 2.71 semitones, which is very clearly different from

the 0.28 semitones standard deviation observed in our study (see Section V.A).

The other extreme is ¢+ = 1, in which case only the long term memory is used to produce
the note, and no information is passed on from one note to the next. In our case the reference
pitch remains r* throughout the piece, i.e. this simplifies to the constant reference pitch
model given in Eq. (9). Given a fixed reference pitch 7*, the constant reference pitch model
predicts that the variance of the error ¢; — r* remains constant across a recording, which is
another way of saying that no drift occurs. To test this prediction, we proceed as follows: we
calculate the errors ¢; — r* with respect to the reference r* (based on the first phrase, as in
Section VI.B) and estimate per-note variances across all recordings. We use a linear model
with pitch error as covariate in order to subtract the linear effect of pitch error variances
in individual notes. The resulting pitch-error-corrected residuals show a highly significant
increase of variance with notes: note number explains 31.3% of the variance (F'(67) = 30.51,
p < 0.0001). The increase in variance per note is 0.001, corresponding to an increase of
0.075 in variance over 75 notes, equivalent to a substantial increase in standard deviation of
v/0.075 = 0.27. On these grounds it is very unlikely that a constant reference pitch is used,

and we have to reject the boundary model for y = 1.

Hence, both boundary models are at odds with our observations: one predicts extremely
volatile drifts, the other—in its assumption of perfect pitch memory—predicts zero drift.
The question is then whether a model with an intermediate memory value of p € (0, 1) will

fit the data better.

D. An intermediate memory parameter p

Having rejected the boundary models for © = 0 and p = 1 we are interested in finding

whether any intermediate p provides a more adequate model. A good model should predict
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mean absolute pitch error

0.18
|

FIG. 9: Mean absolute error for models based on (11) for different values of the memory
weight p. An optimum is recognisable around p = 0.85. Dashed line: best linear

prediction.

the observed individual note pitches with little error.

Since r; is meant to represent t; = (p; — s;) up to a note-wise error, as illustrated in
Figure 8, it seems plausible that, for some parameter u the prediction error can become
small. We measure the model’s mean absolute pitch error (model MAPE) with respect to
this reference. Figure 9 shows the error on a grid of pu values (equidistant with hop size
0.01). The best model is achieved for p = 0.85, leading to a model MAPE of 22 cents, with
errors substantially higher towards the extremes of y = 0 (27 cents) and u = 1 (29 cents).
While the figure shows that the linear model prediction is better (MAPE: 19 cents), only
the memory model is psychologically plausible because it is causal, i.e. it does not depend

on future events.

We also determined the p values that minimise the individual recordings and averaged
them by singer to obtain singer-wise p values. Figure 10 shows a histogram of these singer-
wise estimates, which range from p = 0.62 to p = 0.98 (mean: 0.832, median: 0.850, std.
dev.: 0.105).

The model behaviour in both pitch prediction and spread of drift suggests that a memory

model such as the one defined by Equations (10) and (11) is reasonable for values around
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4
|

0.6 0.7 0.8 0.9 1.0

FIG. 10: Histogram of u by singer.

[ = 0.85.

VII. DISCUSSION

The intonation memory model presented above is particularly interesting because the
parameter p can reflect the capacity of a singer to stay in tune and that—unlike interval
error—is not immediately obvious when a person starts to sing. With three recordings per
participant our data has allowed us to study some characteristics of individual singers, but
more recordings of individual singers are necessary to refine our models and our understand-
ing of intonation memory. For example, our model is stationary, i.e. it predicts zero long
term drift. A non-zero drift term might yield a more realistic model.

For this study we chose to use “Happy Birthday” as our example tune, and while it is
the most widely known song among non-professional singers, using only a single melody is
an obvious limitation. For example, the melody contains notes from a single major scale,
and only some of the intervals possible in that scale actually occur. More different melodies
are needed to study intonation behaviour in more detail and with more claim to generality.

While we found that in our study equal temperament was as good a reference grid as
just intonation, we hope that further experiments will enable us to infer more precisely

the intonation intended by singers. The observed error magnitudes in our experiments were

26



larger than typical differences between temperaments, so it is likely that such fine distinctions
are more relevant to vertical harmony, where singers are able to tune to an external reference

using the roughness of beating between partials of simultaneous notes.

The analyses carried out in this paper all rely on individual notes as the fundamental
musical unit. Future studies will include the temporal development of pitch within the

duration of notes (e.g. glide, vibrato) and investigations on the effect of the duration itself.

As we pointed out in the introduction, previous studies have dealt with intonation drift
in polyphonic singing (Devaney and Ellis, 2008; Howard, 2007), and we deliberately studied
the simpler case of unaccompanied solo singers. Much is to explore in between, especially
interaction between singers; for example, investigating whether the process of inferring the

reference intonation from another singer’s imperfect singing itself leads to biased intonation.

VIII. CONCLUSIONS

This paper has presented a study on intonation and intonation drift in unaccompanied
solo singing. The main focus of the paper was the relations between drift (going out of
tune) on the one hand and measured pitch accuracy, different feedback conditions and
participants’ self-assessment on the other. Our main finding is that drift, while evidently
common, is often minor (less than 0.2 semitones over 50 notes), and not correlated to pitch
accuracy, interval accuracy, or musical background. Surprisingly, most significant drifts are
upward drifts. Using these findings on solo intonation drift we motivate a causal intonation
memory model with a single parameter p representing intonation memory strength. We
show that values around p = 0.85 minimise the model mean absolute pitch error. Our
discussion section highlights possibilities for future work, including further investigations of

memory parameters on individuals, and a more diverse set of melodies.
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APPENDIX A: PFORDRESHER’S SINGING METRICS

We present the singing metrics of Pfordresher et al. (2010) and argue why we prefer
alternative terminology and definitions for our study.
Note accuracy ap is defined as the mean of signed deviations of sung pitches p; from

the target pitches p?:
| M
_ = E 0
ay = M - Di Db;-

Since the average is calculated from signed differences and is thus itself signed, deviations
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in opposite directions could cancel each other. Thus the note accuracy measures a bias or
systematic deviation to lower (ay < 0) or higher (ay > 0) pitches rather than accuracy per
se. In unaccompanied singing, and hence in our study, there is no absolute reference pitch
and hence this measure is not meaningful. Furthermore, as higher absolute values of ay
indicate less accuracy, we prefer the term pitch bias or pitch offset.

Note precision is defined as the mean standard deviation of pitches. Hence, if there are
K pitch classes, with M; instances of pitch class P; having a mean p;, the variance 5? for

the pitch class is given by:

1
S?:M,_l Z(p"_ﬂj)z'

J DiEP;

The note precision 7y is thus:
| X
”:E;%

As a mean standard deviation, note precision is unsigned and positive definite. The larger
the value, the more dispersed are the sung pitches in each pitch class, the smaller the value,
the more consistently the pitches are produced. Again an alternative term such as pitch
spread would be more appropriate.

Interval accuracy is defined as the mean deviation of sung intervals Ap; = p; 1 — p; from

target intervals:

1 M-1
- Api| — |AY].
o M_1;|p| |ApY)|

Interval accuracy is itself signed. The sign indicates systematic deviations to smaller (o; < 0)
or larger (a; > 0) intervals. As there is no distinction between ascending and descending
intervals, two problems arise: the interval accuracy erroneously assesses an interval of the
correct magnitude but wrong direction as being accurate; and a tendency to drift, for exam-
ple to sing flat (downward pitch drift), is not captured, as this results in smaller ascending
intervals but larger descending intervals, which cancel if the error magnitudes match.
Finally, interval precision is defined as the mean standard deviation of interval errors.

Hence, if there are K interval classes I; each having M; instances with a mean of p;, the
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. 2 . . .
variance sj is given by:

and the interval precision 7y is thus:

1 K
W[:E218j.
]:

Once again, this is a measure of spread, with lower values indicating greater precision, so
an alternative name such as interval spread would be preferable.

As a concrete example, consider a case where every interval of m semitones (in either
direction) is sung m cents flat, the sum of all ascending intervals is n semitones, and the
first and last note of the piece are the same nominal pitch. Then it can be shown that the
interval accuracy a; = 0, the interval precision 7; = 0, but the piece has drifted by 2n cents

downwards.
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Musical Background Choir Experience

None 1 None 5)
Amateur 14 As a child 3
Semi-professional 7 No longer active )
Professional 2 Still active 11
Singing Skill Singing Experience
Poor 1 None 3
Low 3 Some 6
Medium 14 A lot 13
High 4 Professional 1
Very High 2 (no response) 1

TABLE I: Self-reported musical experience.
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sg.abl 0.40 0.31 0.54 -0.45 -0.46 0.11 -0.02 0.06
sg.exp  -0.07 0.42 -0.16  -0.27 0.20 0.05 0.11

mus.bg 0.34 -0.16 -0.24 0.10 -0.02 0.05

ch.exp -0.37 -0.40 0.22 0.01 0.07

MAIE  0.93 -0.19 -0.01 -0.06
MAPE -0.19 -0.01 -0.04
Dy, 0.52 0.94

D] 0.54

TABLE II: Spearman rank correlations of survey metadata (singing ability, singing
experience, musical background, choir experience) and measures of accuracy and drift.

Significant correlations (p < 0.01) are shown in bold.
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