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Abstract

This paper presents a study on intonation and intonation drift in un-

accompanied human singing and proposes a simple intonation memory

model that accounts for many of the effects observed. Singing ex-

periments were conducted with 24 singers of varying ability under 3

conditions. Several summary measures of pitch and interval accuracy

are revised and metrics for intonation drift and pitch stability are pro-

posed. A median absolute drift of 11 cents was observed, which was

significant in 22% of recordings. Drift magnitude did not correlate with

other measures of singing accuracy, singing experience or with the pres-

ence of conditions tested. Furthermore, it is shown that neither a static

intonation memory model nor a memoryless interval-based intonation

model can account for the accuracy and drift behaviour observed. The

proposed causal model provides a better fit.

PACS numbers: 43.75.Bc, 43.75.Rs, 43.70.Fq
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I. INTRODUCTION

Unlike other musical instruments, the vocal apparatus is common to all human beings,

and in every known human culture people use it to make music: singing is one of the

human universals (Brown, 1991) (as reproduced by Pinker (2002)). There is good evidence

that vocal music was practiced even in prehistoric human societies, and it might even have

preceded language (Mithen, 2007). Yet science is only beginning to understand the control

processes involved in human singing. This paper is aimed at providing some insights into

a parameter in singing that is crucial to many singing styles but has so far received little

academic attention: intonation.

Intonation is defined as “accuracy of pitch in playing or singing” (Swannell, 1992), or

“the act of singing or playing in tune” (Kennedy, 1980). Both of these definitions imply

the existence of a reference pitch, which could be internal or external. We treat intonation

as the signed pitch difference relative to the reference pitch, measured in semitones on an

equal-tempered scale:

pitch difference = 12 log2
f0
fref

, (1)

where f0 is the measured fundamental frequency and fref is the fundamental frequency of the

reference (“correct”) pitch. (Note that we assume pitch, a perceptual quantity, is adequately

represented by its physical correlate, fundamental frequency, for harmonic sounds such as

singing (Vurma and Ross, 2006).) As pitch differences are generally small, we often use the

unit cent, equal to a hundredth of a semitone in equal temperament. Semitones and cents

are commonly used in research on pitch (e.g. Pfordresher and Mantell, 2012) because they

are easier to interpret in musical terms than raw frequency differences, and the logarithmic

frequency scale corresponds more closely to pitch perception than a linear scale does.

a)Electronic address: matthias.mauch@eecs.qmul.ac.uk
b)Electronic address: klaus.frieler@hfm-weimar.de; Also at Musikwissenschaftliches In-

stitut, HfM Franz Liszt Weimar.
c)Electronic address: simon.dixon@eecs.qmul.ac.uk
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For this paper, we use as our reference tuning system equal temperament with A4 tuned

to 440Hz. Then, adopting the MIDI pitch scale, which assigns an integer for each note of

the chromatic scale, with middle C assigned 60 and A4, 9 semitones higher, being assigned

69, we define semitone pitch p as

p = 69 + 12 log2
f0
440

. (2)

Thus we can map any fundamental frequency to a pitch in semitones. In this system, a

nominal G has a frequency of almost exactly 392Hz, and hence a note G sung at 401Hz

would have an intonation difference of 1200 log2
401
392

≈ 39 cents. We will see in Section IV

that for our unaccompanied singing data, neither the tuning system nor the reference pitch

is known, but that for the purposes of our study we can assume equal temperament at an

estimated tuning frequency, without substantially affecting our results.

The remainder of the paper is structured as follows. Section II discusses existing work

related to singing intonation and musical memory. Section III describes our intonation

experiments conducted with a group of singers of different abilities. Section IV defines

and illustrates several metrics of singing accuracy and drift. In the results section (V) we

show what intrinsic and external factors influence our measurements. The following section

(VI) introduces a simple model of tonal memory which is able to account for the intonation

stability and drift we observed. Section VII provides a discussion of achievements and future

work, and a summary of our conclusions is found in section VIII.

II. PREVIOUS WORK

Only since the advent of precise pitch analysis in the form of the tonoscope (Seashore,

1914) has it been possible to study intonation quantitatively. Carl Seashore’s Psychology

of Music (Seashore, 1967, originally published in 1938) already featured analyses of vibrato

based on this technique. Since then, less laborious signal processing methods for pitch

analysis have been devised (e.g. Schroeder, 1968; Markel, 1972; de Cheveigné and Kawahara,

2002). These methods, along with computer programs like Praat (Boersma, 2002) and the
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advent of fast, affordable computers have made intonation analysis feasible to anyone with

a microphone and a computer.

Recently, progress has been made on quantifying differences in intonation between

singers. In the music informatics domain, singing tuition applications (e.g. Cano et al.

(2012)) have driven the development of singing assessment methods that often focus on in-

tonation aspects (for an overview, see Molina (2012)). In the music psychology literature,

the phenomenon of so-called “poor singers” has gained some interest (e.g. Berkowska and

Dalla Bella, 2009; Dalla Bella and Berkowska, 2009; Dalla Bella et al., 2007; Pfordresher

et al., 2010).

Vurma and Ross (2006) investigated professional singers’ ability to sing three intervals

(minor second, tritone and perfect fifth), and reported average standard deviations of 22

cents in interval size, and 34 cents in absolute pitch relative to a tuning fork reference. Im-

mediately after singing, the singers were unable to judge whether their intervals were out

of tune, but after listening to a recording of their singing, their judgements were not signif-

icantly different from other expert listeners. Judgements of out of tune singing correlated

with pitch errors, but errors of even 40 cents were not reliably judged out of tune by the

majority of listeners.

Dalla Bella et al. (2007) compared occasional and professional singers performing a well-

known melody in a free memory call scenario. Two groups of occasional singers made errors

in singing intervals of around 0.6 and 0.9 semitones on average, while professional singers’

errors were only 0.3 semitones. A correlation with tempo was also observed, and a second

experiment was performed, which confirmed that errors decreased significantly when the

same singers sang more slowly. In a further study Dalla Bella and Berkowska (2009) used

both free recall and repetition paradigms to characterise poor singing in terms of timing

accuracy, relative pitch (interval) accuracy and absolute pitch accuracy, and found that

poor singers could have deficits in any one or any combination of these attributes.

Pfordresher et al. (2010) distinguish the accuracy (ability to reproduce a target pitch)

and precision (consistency in repeated attempts to produce a pitch) of singers in order
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to classify “poor” singers. They found that the majority (56%) of singers were imprecise

(standard deviation of pitch error greater than one semitone), but only 13% of singers were

inaccurate (absolute value of average error greater than 1 semitone). It was also observed

that errors were greater for the imitation task than for a recall task. In our study, we use

their definition of poor singers in order to exclude some singers (Section III), and we discuss

their metrics for local intonation performance in Appendix A.

Most existing research on intonation is concerned with a fixed tuning system, but some

authors have also studied temporal changes in reference pitch, which we call intonation drift.

Howard (2007) and Devaney et al. (2012) investigated pitch drift in unaccompanied vocal

ensembles. In such a context, physics predicts that perfect consonance conflicts with pitch

stability over time. The idea goes back at least to the 16th century, when music theorist

Giovanni Benedetti wrote a piece of three-part singing designed to result in various amounts

of pitch drift. The evidence from the new studies for a reliably predictable effect is not

entirely conclusive, partly due to small sample sizes: Devaney et al. (2012) report only

negligible effects on the original Benedetti composition, while Howard (2007) reports drifts

roughly in line with predictions on specially composed new pieces.

Far from being a purely theoretical concept, intonation drift is a daily practical concern

of choir conductors, as they rehearse and perform pieces that are not designed to produce

intonation drift (assuming benign composers). Conductors and singers have put forward

various hypotheses in discussion forums (e. g. Barbershop Tuning Discussion, 2012) and in

music tutorials (Crowther, 2003), attempting to explain the phenomenon of drift, but these

explanations all still await empirical testing.

This study investigates intonation drift in unaccompanied solo singing, without further

constraints such as consonance with other singers. In contrast with some of the work de-

scribed above, the singers in our experiment refer only to their own memory to stay in tune,

i.e. the pitch reference is solely internal. It is well-known among singing teachers that in

similar situations (such as unaccompanied sight-singing practice) even accurate singers tend

to drift. Therefore, our work investigates both singing accuracy and intonation drift with a
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FIG. 1: “Happy Birthday” in F-Major

particular emphasis on understanding how they are related.

III. METHOD

A. Participants

A total of 31 participants from the UK and Germany took part in the experiment. They

were recruited from musicology students, office colleagues, lab members and the choir of the

Wolfson College in Cambridge UK. Three of the subjects were unable to sing the requested

melody and were excluded from the study. Also excluded were four further participants, who

were detected as outliers and hence classified as “poor” singers, an established phenomenon

(Pfordresher and Brown, 2007). The outlier classification was performed using multivariate

outlier detection (Filzmoser et al., 2005) on two singer-based metrics: mean absolute interval

error (see Section IV.C) and ratio of intervals within a semitone of the true interval. After

these exclusions, 24 subjects remained in the study. The age of the participants ranged

from 13 to 62 with a median of 32.5 years (mean: 34.5). The gender ratio was imbalanced

with 6 females and 18 males in the sample. The musical experience of participants was

wide-spread. Fourteen singers considered themselves amateur musicians, 9 professionals or

semi-professionals, and 1 reported no musical background. Thirteen participants reported

“a lot” of singing experience, 9 some or no experience, one subject sings on a professional

level, and one did not respond. Eleven subjects are still active in some choir, while 8 had

previous choir experience, and 5 have never sung in a choir (see Table I). Since we had a

large share of male participants, baritone was the most common voice type with a total of

13 subjects, followed by soprano with 6 subjects.

7



B. Material

Since we chose to employ a free memory call paradigm with a variety of subjects from

two different countries, the choice fell on “Happy Birthday”, probably the single best-known

and most wide-spread song in the world. Happy Birthday cannot be considered a very easy

song, since it contains a variety of different intervals, some of them being large jumps (see

Fig. 1). Hence it poses some intonation challenges even for experienced singers. The ambitus

is exactly one octave using a full major scale from dominant to dominant an octave higher.

The song is written in 3
4 time, beginning with a two note upbeat and comprising a total of

25 notes in 4 phrases of 6, 6, 7, and 6 notes each.

C. Procedure

Each participant sang a total of 9 renditions of “Happy Birthday”, in three recordings

of three runs each. Details are given below. For a particular recording each participant was

asked to sing three consecutive runs of “Happy Birthday”. The participants could choose

the starting pitch at their own comfort. They were provided with a click track of moderate

tempo (96 bpm) and instructed to wait four bars before beginning to sing. Subjects were

instructed to sing the syllable “na” throughout. Subjects were recorded using Audacity 2.0

running on a Windows Laptop or a MacBook Pro. A conventional headset (Logitech USB

Headset 390) functioned both as microphone and headphones, through which participants

were provided with the click track and the noise in the Masked condition (see below).

Three such recordings were made of each participant to test three different conditions,

which differed by the way the second run of “Happy Birthday” was performed.

Normal. The participant sang three renditions of “Happy Birthday” as described above.

Masked. Pink noise at a moderate sound pressure level of about 70-80 dB SPL was applied

over the headphones during the second of three renditions of “Happy Birthday”.

Imagined. The participant was asked to remain silent during the second rendition of
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“Happy Birthday”, while imagining to sing, and to resume singing at the start of

the third rendition.

The Masked condition diminishes auditory feedback, making it harder for the participants

to hear their own singing, while the Imagined condition removes both auditory and kines-

thetic feedback, i.e. the participants can neither hear their singing nor feel singing-induced

movements and the states of their vocal cords (unless they moved their vocal cords without

singing).

The sequence of conditions was held constant (in increasing order of difficulty). In each

condition, subjects sang 75 notes except in the Imagined condition with only 50 notes. Most

of the German singers sang the German version of the melody which divides note 17 into

two syllables at the same pitch; this extra note was disregarded in the analysis. One singer

consistently missed note 19.

D. Analysis

The recorded songs were analysed using a semi-automatic pitch tracking process. The

resulting note tracks were then analysed using R (2008). Onsets and offsets of the

steady states of note events were annotated using Sonic Visualiser 2.0 (Cannam et al.,

2010) by the second author (kf). Automatically calculated onsets and offsets were ad-

justed manually, and the resulting annotations were fed into customised pitch tracking

software (http://code.soundsoftware.ac.uk/projects/yintony [will be made available

upon publication]), which is based on the YIN algorithm (de Cheveigné and Kawahara,

2002). In order to obtain note-wise pitch estimates we take the median pitch estimate over

the annotated duration of the note, as illustrated in Figure 2. A total of 4789 notes in 72

recordings were collected this way.

To test the reliability of the note timing annotations, 12 randomly selected blocks (of

3 runs) were also annotated manually by the other two authors and submitted to the note

tracking algorithm. A comparison of onset and offset annotations reveals a different strategy
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FIG. 2: Example pitch track (grey crosses) and note-wise pitch estimates (horizontal bars),

calculated as medians between annotated note boundaries (vertical dashed lines).

of coder kf compared to the other two: kf consistently placed onsets later and offsets earlier

in the sound event, capturing only the steady state portion of the note. A comparison of the

different resulting pitch tracks revealed no significant differences for the note pitch estimates.

The average difference of the two other coders to the first coder was less than 0.2 cents, and

only 1.4% of F0-differences were larger than 5 cents, showing that the median method of

determining the pitch is robust against interpretations of note onsets and offsets.

IV. METRICS OF ACCURACY AND DRIFT

In this section we introduce how we measure intonation in terms of interval and pitch

error, singer-wise performance measures and drift. We start by defining interval and pitch

errors for individual notes and illustrate these using some examples from our data. Then

we introduce measures of intonation accuracy and drift based on the error definitions.

A. Interval Error

The distance between two pitches is referred to in musical terms as an interval, corre-

sponding in physical terms to the ratio of the constituent fundamental frequencies. For the
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FIG. 3: Interval errors in semitones relative to the score, using equal temperament. The

boxes indicate the 1st, 2nd (median) and 3rd quartiles, the whiskers extend to ‘the most

extreme data point which is no more than 1.5 times the interquartile range’ (R software

Team R Development Core (2008)). Outliers are omitted for clarity of display.

sake of this paper, we express the interval leading to the ith pitch pi (see Eq. (2)) as the

signed distance ∆pi = pi − pi−1 in semitones between the current and the preceding note.

The interval error of the observed interval ∆pi can then be written as

einti = ∆pi −∆p0i , (3)

where ∆p0i is the nominal interval in semitones using equal temperament (ET). Interval error

is easy to define (unlike pitch error, see Section IV.B). Figure 3a shows a box plot of interval

error by nominal interval. A first observation is that the two largest upward intervals of

8 semitones (minor sixth) and 12 semitones (octave) are significantly flat, i.e. smaller than

expected (one sample t test (t(186) = −6.96, t(183) = −9.09, both p < 0.0001). This

phenomenon is called compression and is well known in the literature (Pfordresher et al.,

2010).

A more puzzling case is the error at the nominal interval of zero semitones. In our data,

this so-called prime interval, a repetition of the same pitch, is systematically sharp, i.e. sung

too high (one sample t test: t(753) = 17.96, p < 0.0001) by approximately 0.29 semitones.
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FIG. 4: Example of pitch error estimation, showing pitch measurements pi (empty bullets)

and local tonic estimates ti (filled) using a linear fit. The stems represent the pitch error ei.

Figure 3b suggests two possible explanations. Notice that all zero-semitone intervals occur

between the first and second note of each phrase; they are the two notes that correspond each

time to the lyric ‘hap-py ’. A first hypothesis, then, is that the reason for the interval being

sung sharp is that its first note is usually sung flat simply by virtue of being the starting

note after the short pause between phrases, where the voice rests. A second hypothesis,

that the second note is sharp in preparation for an upward interval occurring after the note,

cannot explain the sharpness of note 21, which is followed by a downward interval. However,

to test which hypothesis explains the data better, we need the concept of note intonation

error, which is the topic of the next paragraphs.

B. Pitch error

Defining pitch error is not as straight-forward as defining interval error, because in our

unaccompanied singing data we have no external reference pitch against which intonation

could be measured. Instead, the tuning emerges as singers sing and may change over the

course of the song. As a result, no single best way of defining pitch intonation is possible.

In order to obtain a reference we will use a linear fit to the local tonic estimate, as
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FIG. 5: Pitch errors with respect to linear prediction (run-wise).

explained below. For the measured pitch pi of the ith note we can find an estimate

ti = pi − si (4)

of the implied tonic pitch by subtracting from pi the nominal pitch si relative to the nominal

tonic. These nominal pitches for “Happy Birthday” are given in Figure 5b. For example,

if the first note in a run is sung at p1 = 50.45 (see Eq. 2), then the implied tonic is

t1 = 50.45 − (−5) = 55.45 because the first note is 5 semitones below the tonic. This

is shown in Figure 4, which also provides an intuitive illustration of the next steps: for

every run we fit a line to the ti, i = 1, . . . , 25 with note number i as independent variable,

obtaining fitted values t′i, i = 1, . . . , 25. We define the note error ei as the difference between

the implied tonic and the fitted tonic:

ei = ti − t′i. (5)

The individual errors are represented by the stems between the linear fit and the filled

markers in Figure 4.

With the ability to measure the pitch error, we can now investigate the relative ef-

fects of phrase beginnings and note jump preparation, as hypothesised in Section IV.A.

A linear model predicting pitch error by the independent variables is-beginning-of-phrase
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and interval-to-next-note shows that both correlate significantly (F (4667) = 254.94, both

p < 0.0001) with interval error: beginning of phrase ‘makes’ notes about 21 cents flat. On

average, each signed semitone in the following interval leads to a sharpening (or flattening,

in case of downward intervals) of 1.3 cents, i.e. 12×1.3 = 15.6 cents in the case of the octave

jump, (−4) × 1.3 = −5.2 cents in the case of a downward major third. Together, they

account for 9.8% of the variance (as measured by R2). Hence, neither hypothesis can be

rejected—it is likely that both influence intonation. The individual models explain less vari-

ance: beginning of phrase explains 3.8% (F (4668) = 182.3, p < 0.0001); following interval

explains 6.2% (F (4773) = 316.8, p < 0.0001).

Note that neither interval nor pitch error can be used directly to judge the value or

musical correctness of a sung note. Rather than a value judgement, ‘error’ indicates devia-

tion from the mathematically defined equal temperament grid. While using other reference

temperaments would be possible, they do not provide substantially differing errors, which

is in line with previous results by Devaney et al. (2011). In fact, in terms of mean absolute

pitch error (see Section IV.C), equal temperament is a significantly better hypothesis than

just intonation (t(4774) = −14.1927, p < 0.0001), but the actual difference is very small

(1.3 cents).

C. Metrics of singing accuracy and precision

Pfordresher et al. (2010) define four different metrics to summarise singing precision and

accuracy in a recording or for a singer. However, in applying the measures to our data we

encountered several problems arising from the definitions, both in terms of their intuitive

understanding (the names are misleading) and power to express features of singing on our

data (they obfuscated relevant information). Detailed explanations and definitions are given

in Appendix A. In the following we therefore propose the use of alternative, more intuitive

summary metrics.

A measure that combines pitch accuracy and precision is computed by averaging absolute
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differences between rendition and target, which reflects intonation skill. Hence, we define

the mean absolute pitch error (MAPE) as:

MAPE =
1

M

M∑
i=1

|ei|. (6)

Similarly, our alternative measure to Pfordresher’s interval accuracy, the mean absolute

interval error (MAIE) is defined as:

MAIE =
1

M − 1

M∑
i=2

|einti |. (7)

This measure is always non-negative, hence no tendency to sing larger or smaller intervals is

reflected here, but it is in our view a more natural way to indicate how accurately intervals

are sung.

D. Metrics of pitch drift

Each of our recordings has a first and a third run of “Happy Birthday”, each consisting

of 25 notes. We estimate drift based on pitch differences between corresponding notes in

these two runs of the song. Hence, for a particular recording we define pitch drift D as the

mean difference

D =
1

25

25∑
i=1

pi+50 − pi. (8)

The drift metric D conveys information about the magnitude and direction of drift. In order

to consider only the magnitude we use the metric absolute drift, i.e. |D|.

In the more general case without repeated sequences drift can be estimated as the slope

of a linear model predicting the local tonic estimates ti with the note numbers 1,. . . ,75 as the

covariate. We have already used the same technique to calculate pitch error (Section IV.B).

As we will see in the following section, this linear drift, denoted DL, is very highly correlated

with D, so for most of our analyses we will use only D and |D|. From the model used to

determine DL for a particular recording we also calculate the associated p value, which is

an indicator of the significance of the drift effect.

15



semitones

nu
m

be
r 

of
 r

ec
or

di
ng

s

0.0 0.1 0.2 0.3 0.4

0
5

10
15

20

(a) mean abs.

pitch error

semitones

0.0 0.1 0.2 0.3 0.4 0.5

(b) mean abs.

interval error

semitones

−0.6 −0.2 0.0 0.2 0.4 0.6

(c) drift D

cents

−1.0 −0.5 0.0 0.5 1.0

(d) linear drift DL
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V. RESULTS

The metrics summarising accuracy and drift defined in Section IV allow us to analyse

recordings and assess the correlations with test condition (Normal, Masked, Imagined) and

participant factors such as choir experience. In order to prepare for the correlation analyses,

we first present the distributions of recording-wise summary statistics themselves.

A. Distributions of accuracy and drift

We calculated the mean absolute pitch error (MAPE, see Section IV.C) for each of the

72 recordings. Figure 6a provides a histogram of the distribution ofMAPE, showing that the

average error magnitude is less than 0.5 semitones for all recordings, with most recordings

having a MAPE of around 0.2 semitones (mean: 0.189; median: 0.187; std. dev.: 0.051).

While this result shows that the singing in most recordings was systematically compatible

with equal temperament, it is also clear that 0.2 semitones (20 cents) is slightly larger

than the just noticeable difference, which for typical singing frequencies up to 800Hz is

usually below 1%, i.e. below 17 cents (Henning, 1955). The distribution of MAIE is similar,

with slightly larger magnitudes of around 26 cents (mean: 0.263; median: 0.267; std. dev.:

0.069). Turning to Table II, we observe that MAPE and MAIE are indeed correlated almost
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deterministically across recordings (Spearman rank correlation of 0.93). What is remarkable

is that neither significantly correlates with drift or absolute drift. This suggests that the

capability of remaining in a key does not depend on the ability to sing individual notes

accurately. This conclusion is valid only if we can show that the drifts we observed are

unlikely to stem from measurement error. The question is hence whether the drifts we do

observe are statistically significant.

First, we consider the distribution of drift over recordings. A histogram of drift D is

shown in Figure 6c (in semitones, mean: 0.074; median: 0.069; std. dev.: 0.169) and of

linear drift DL in Figure 6d (in cents, mean: 0.097; median: 0.096; std. dev.: 0.371). The

absolute intonation drift |D| (in semitones, mean: 0.138; median: 0.111; std. dev.: 0.122)

has a mean of only 0.138, which is smaller than the mean MAPE (0.187). That is, in our

sample the expected drift magnitude over 50 notes is smaller than the expected absolute

error per note.

In order to test whether the drifts are a real effect rather than measurement noise, we

use the p value of the linear fit to the ti values, as described in Section IV.C. Figure 7 plots

the p value against linear drift DL. Of the 72 recordings, 16 (22%) have a p value below the

line of confidence level 0.01, that is: they show significant drift. (Relaxing the confidence

level to 0.05, significant drift occurs in 27 recordings, 38%.) We conclude that drift is indeed

a real effect. Hence, the lack of correlation between our measures of drift on the one hand

and MAIE and MAPE on the other is a non-trivial finding.

A further, unexpected discovery is that—in our dataset—the vast majority of recordings

with significant drift actually drift upwards. This is surprising especially because many choirs

suffer from the opposite phenomenon (they tend to go flat).

In summary, despite significant drift, drift effects are unrelated to the magnitude of pitch

error and interval error. This is all the more surprising given that the magnitudes of MAPE

and MAIE are so widely spread. For example, recordings with MAPE values as disparate

as 0.1 semitones and 0.3 semitones can show very similar drift magnitudes near to zero. The

relative independence of drift and local error is further emphasised by the fact that all have
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recording. p values below 0.01 are considered significant.

absolute values in the same order of magnitude, which is incompatible with an intonation

model in which pitch errors propagate, as we will explore in Section VI. First, however, we

investigate how different participant factors and singing conditions influence the results.

B. Participant factors

In order to determine whether knowing the singer constitutes a significant advantage

to predicting MAPE, MAIE, D or |D| in a recording we construct linear models predicting

these metrics with singer as a (nominal) independent variable. The singer’s identity is indeed

an excellent predictor for the MAPE and MAIE measures, explaining 85% (F (23) = 12.19,

p < 0.0001) and 81% (F (23) = 8.89, p < 0.0001) of the variance between recordings.

Predicting drift is much less effective with less variance explained and higher p values (in

the case of D: 48%, F (23) = 1.89, p = 0.03; in the case of DL: F (23) = 2.75, p = 0.0015),

suggesting slightly lower predictive power. For absolute pitch drift |D| prediction completely

fails (only 22% of variance explained, F (23) = 0.60, p = 0.91). In short, though knowing the

singer is likely to provide some information on the drift performance, the singers differ much

more in terms of their ability to accurately sing single notes than in terms of characteristic
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drift direction or magnitude. This result consolidates the qualitative difference between

measures of accuracy and drift found in Section V.A.

We also investigated the relation between the quantitative intonation metrics and the

singers’ self-assessment, taken from a survey they filled in. Three self-reported metrics

take values from 1 to 5: singing ability (poor to very high), singing experience (none to

professional) and choir experience (none to still active), and musical background (none to

professional) takes values from 1 to 4. Table II shows the Spearman (i.e. rank) correlation

values between all metrics, with significant correlations (p < 0.01) highlighted in bold print.

We observe that most of the self-reported measures are inter-correlated, with the only ex-

ception of singing experience/musical background. In fact, the self-reported general level of

musical background does not correlate with any of the quantitative measures either. Further

study may reveal whether singing skills are indeed partially independent of general levels of

musicality, as has been suggested before (Hutchins and Peretz, 2012).

However, two kinds of self-assessment ratings, singing ability and choir experience, do

significantly correlate with our quantitative measures MAPE and MAIE. All of the four

combinations have absolute correlations ≥ 0.37. While the correlation of accurate singing

and choir membership is expected, the singers’ assessment of their singing ability, too, is in

line with our measurements of intonation accuracy.

As we have mentioned in Section V.A, we observed little correlation between the mea-

sures of accuracy, MAPE and MAIE, and measures of drift, D and |D|. In fact, the only

two metrics that correlate with drift D are those that are indeed directly related: linear

drift, which is a different measure of the same phenomenon, and absolute drift |D|, which

correlates because most of the D values are actually positive, i.e. they coincide with |D|.

Again, other than these direct connections, no other metrics correlate with either D or |D|,

in particular, none of the self-reported measures, including singing experience and choir

experience.
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C. Treatment factors

To see whether the three conditions (Normal, Masked, Imagined, see Section III) have an

influence on our measures of accuracy and drift, an analysis of variance was conducted. Since

all four accuracy and precision variables are not normally distributed (right-skewed), a set of

non-parametric Kruskal-Wallis tests was performed, but no significant differences between

conditions and runs were found (MAPE: χ2(2) = 0.89, p = 0.64; MAIE: χ2(2) = 2.43,

p = 0.30; D: χ2(2) = 2.51, p = 0.28; |D|: χ2(2) = 0.42, p = 0.81). Even the middle

run in the Masked condition did not significantly deteriorate singing intonation, in contrast

with some other findings (e.g. Mürbe et al., 2002), but in line with others who used low-

level noise similar to that in our experiments (e.g. Pfordresher and Brown, 2007). One

observation during the experiments was that singers tend to sing louder in the Masked

condition, compensating for the deprived auditory feedback (the so-called Lombard effect,

Lombard, 1911), which is likely to have made the auditory feedback inhibition ineffective.

In summary, the three conditions had little effect on the singers we tested. Neither their

singing accuracy nor their tendency to drift were significantly affected.

D. Recapitulation

The various results from this section support the overarching impression that intonation

drift is relatively independent of singers’ capability to sing individual notes accurately. About

22% of our recordings show a significant difference (drift) between the first and third run of

“Happy Birthday”. The range of drifts, however, is small; for example, the mean absolute

interval error is on the same order of magnitude as the drift over as many as 50 notes. Thus

singers must possess a strong intonation memory which enables them to stay in tune. The

next section proposes a model of intonation memory that is compatible with our findings.
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VI. A MODEL FOR INTONATION STABILITY

In this section we consider the question: how do singers stay in tune at all? While

significant pitch drift was detected in many recordings, the tuning difference over three runs

of “Happy Birthday” stayed remarkably small, despite large intonation errors on individual

notes (see Section V.A). It appears that even amateur singers possess a mechanism that

prevents them from chaotically drifting out of tune.

This stabilising mechanism, we hypothesise, is mainly based on the short-term memory

of a pitch reference. Before we introduce how we model this memory, we consider a basic

model of pitch production.

A. Pitch Production under Constant Reference Pitch

A simple pitch production model can be built on the assumption that the intonation of

a note consists mainly of two components: a reference pitch r, and the score information

relative to that reference pitch. We choose to encode the melody notes in semitones relative

to the tonic. (This is arbitrary; any other reference yields an equivalent model.) Assuming

an additive Gaussian pitch error εi ∼ N(0, σi), the pitch production process can then be

written as

pi = r + si + εi, (9)

where pi is the pitch of the ith note, r is the reference pitch and si is the fixed score

information given relative to the reference pitch. The error εi models all additional noise,

e.g. from physiological effects.

To illustrate the model, a baritone can sing comfortably in the pitch range around

G3, so let us assume a reference pitch r = 55.43, corresponding to the tonic of “Happy

Birthday”. The third note of “Happy Birthday” (‘hap-py birth-. . . ’) is three semitones

below the tonic, i.e. the score value is s3 = −3. Then the desired sung note would be

r + s3 = 55.43 − 3 = 52.43. This process clearly captures important aspects of the pitch

production process. However, its assumption of a static reference pitch would require the
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singers to have perfect pitch memory, which, in general, is not the case.

B. Pitch Production Model with Imperfect Pitch Memory

The pitch drifts we observe in our data (see Section V.A) clearly indicate that singers do

not retain a fixed reference pitch or tonality; rather, they slightly drift up and down while

they sing, which indicates imperfect pitch memory. In order to capture imperfect pitch

memory, we have to make adjustments to the model presented in Eq. (9) above.

Since the score notes si are fixed, we can extend the equation most naturally by modelling

the tuning pitch r as a time-varying process ri, i.e. the production equation now becomes

pi = ri + si + εi, (10)

We assume that the process ri is causal, i.e. it only depends on past events at times j =

1, . . . , i−1. In particular, a singer cannot predict the time-varying reference pitch from future

local pitch deviations, so a linear model like the one used for the calculation of pitch error

(see Section IV.B and Figure 4) with note numbers as covariates is not feasible. Instead, we

assume that ri is a causal smoothing process defined as the running mean

ri = µri−1 + (1− µ) (pi−1 − si−1) (11)

of the memory reference ri−1 and a point-estimate of the reference pitch (pi−1 − si−1), where

µ ∈ [0, 1] is a parameter relating to the strength of memory. By calculating the running

mean the influence of past notes decays geometrically. The recursive equation (11) is a

simplistic model of a tuning memory process that pulls the reference pitch in the direction

of the observed error ei−1 = (pi−1 − si−1)− ri−1 at every step and can be re-written as

ri = ri−1 + (1− µ)ei−1. (12)

A similar model, based on updated tuning histograms, was proposed by Ryynänen (2004)

to deal with the transcription of monophonic melodies in an engineering context. Since no

reference pitch is available before the first observation, Eq. (11) is not defined for i = 1,
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i.e. we have a cold start problem. We choose the first phrase (six notes) to initialise the

smoothed reference pitch estimate r∗ = 1
6

∑
ti =

1
6

∑
(pi − si). The first six notes in every

recording are then excluded from any further analysis of this model, and the recursive update

(11) is applied from i = 7. Figure 8 shows the local and smoothed reference pitches for an

example recording under the Normal condition.
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FIG. 8: Example of observed tonality estimates ti (marked as +) and the estimated

reference pitch ri (filled bullets) with parameter µ = 0.85.

C. Boundary models: no memory and absolute memory

The extreme cases µ = 0 and µ = 1 generate models with no memory and perfect

memory, respectively. If µ = 0, no memory is used to predict the current note except for

the previous note realisation, i.e. the reference pitch is simply ri = (pi−1 − si−1), and hence

pi = pi−1 + (si − si−1)︸ ︷︷ ︸
interval

+εi.

That is, pitch production is based on the interval from the previous note realisation.

This also means that errors from the previous note are fully passed on. Mathemat-

ical formalisation confirms that with an arbitrary starting pitch p0 the pitch variance

Var[pi − p0] =
∑i

j=1Var[∆pj] is the sum of the interval error variances (assuming that
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intervals are independent). At the average observed interval variance of Var[∆pi] = 0.147

the expected variance of two notes spaced 50 notes apart is 50 × Var[∆pi] = 7.36. This

corresponds to a standard deviation of 2.71 semitones, which is very clearly different from

the 0.28 semitones standard deviation observed in our study (see Section V.A).

The other extreme is µ = 1, in which case only the long term memory is used to produce

the note, and no information is passed on from one note to the next. In our case the reference

pitch remains r∗ throughout the piece, i.e. this simplifies to the constant reference pitch

model given in Eq. (9). Given a fixed reference pitch r∗, the constant reference pitch model

predicts that the variance of the error ti − r∗ remains constant across a recording, which is

another way of saying that no drift occurs. To test this prediction, we proceed as follows: we

calculate the errors ti − r∗ with respect to the reference r∗ (based on the first phrase, as in

Section VI.B) and estimate per-note variances across all recordings. We use a linear model

with pitch error as covariate in order to subtract the linear effect of pitch error variances

in individual notes. The resulting pitch-error-corrected residuals show a highly significant

increase of variance with notes: note number explains 31.3% of the variance (F (67) = 30.51,

p < 0.0001). The increase in variance per note is 0.001, corresponding to an increase of

0.075 in variance over 75 notes, equivalent to a substantial increase in standard deviation of
√
0.075 = 0.27. On these grounds it is very unlikely that a constant reference pitch is used,

and we have to reject the boundary model for µ = 1.

Hence, both boundary models are at odds with our observations: one predicts extremely

volatile drifts, the other—in its assumption of perfect pitch memory—predicts zero drift.

The question is then whether a model with an intermediate memory value of µ ∈ (0, 1) will

fit the data better.

D. An intermediate memory parameter µ

Having rejected the boundary models for µ = 0 and µ = 1 we are interested in finding

whether any intermediate µ provides a more adequate model. A good model should predict
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weight µ. An optimum is recognisable around µ = 0.85. Dashed line: best linear

prediction.

the observed individual note pitches with little error.

Since ri is meant to represent ti = (pi − si) up to a note-wise error, as illustrated in

Figure 8, it seems plausible that, for some parameter µ the prediction error can become

small. We measure the model’s mean absolute pitch error (model MAPE ) with respect to

this reference. Figure 9 shows the error on a grid of µ values (equidistant with hop size

0.01). The best model is achieved for µ = 0.85, leading to a model MAPE of 22 cents, with

errors substantially higher towards the extremes of µ = 0 (27 cents) and µ = 1 (29 cents).

While the figure shows that the linear model prediction is better (MAPE : 19 cents), only

the memory model is psychologically plausible because it is causal, i.e. it does not depend

on future events.

We also determined the µ values that minimise the individual recordings and averaged

them by singer to obtain singer-wise µ values. Figure 10 shows a histogram of these singer-

wise estimates, which range from µ = 0.62 to µ = 0.98 (mean: 0.832, median: 0.850, std.

dev.: 0.105).

The model behaviour in both pitch prediction and spread of drift suggests that a memory

model such as the one defined by Equations (10) and (11) is reasonable for values around
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µ = 0.85.

VII. DISCUSSION

The intonation memory model presented above is particularly interesting because the

parameter µ can reflect the capacity of a singer to stay in tune and that—unlike interval

error—is not immediately obvious when a person starts to sing. With three recordings per

participant our data has allowed us to study some characteristics of individual singers, but

more recordings of individual singers are necessary to refine our models and our understand-

ing of intonation memory. For example, our model is stationary, i.e. it predicts zero long

term drift. A non-zero drift term might yield a more realistic model.

For this study we chose to use “Happy Birthday” as our example tune, and while it is

the most widely known song among non-professional singers, using only a single melody is

an obvious limitation. For example, the melody contains notes from a single major scale,

and only some of the intervals possible in that scale actually occur. More different melodies

are needed to study intonation behaviour in more detail and with more claim to generality.

While we found that in our study equal temperament was as good a reference grid as

just intonation, we hope that further experiments will enable us to infer more precisely

the intonation intended by singers. The observed error magnitudes in our experiments were
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larger than typical differences between temperaments, so it is likely that such fine distinctions

are more relevant to vertical harmony, where singers are able to tune to an external reference

using the roughness of beating between partials of simultaneous notes.

The analyses carried out in this paper all rely on individual notes as the fundamental

musical unit. Future studies will include the temporal development of pitch within the

duration of notes (e.g. glide, vibrato) and investigations on the effect of the duration itself.

As we pointed out in the introduction, previous studies have dealt with intonation drift

in polyphonic singing (Devaney and Ellis, 2008; Howard, 2007), and we deliberately studied

the simpler case of unaccompanied solo singers. Much is to explore in between, especially

interaction between singers; for example, investigating whether the process of inferring the

reference intonation from another singer’s imperfect singing itself leads to biased intonation.

VIII. CONCLUSIONS

This paper has presented a study on intonation and intonation drift in unaccompanied

solo singing. The main focus of the paper was the relations between drift (going out of

tune) on the one hand and measured pitch accuracy, different feedback conditions and

participants’ self-assessment on the other. Our main finding is that drift, while evidently

common, is often minor (less than 0.2 semitones over 50 notes), and not correlated to pitch

accuracy, interval accuracy, or musical background. Surprisingly, most significant drifts are

upward drifts. Using these findings on solo intonation drift we motivate a causal intonation

memory model with a single parameter µ representing intonation memory strength. We

show that values around µ = 0.85 minimise the model mean absolute pitch error. Our

discussion section highlights possibilities for future work, including further investigations of

memory parameters on individuals, and a more diverse set of melodies.
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APPENDIX A: PFORDRESHER’S SINGING METRICS

We present the singing metrics of Pfordresher et al. (2010) and argue why we prefer

alternative terminology and definitions for our study.

Note accuracy αN is defined as the mean of signed deviations of sung pitches pi from

the target pitches p0i :

αN =
1

M

M∑
i=1

pi − p0i .

Since the average is calculated from signed differences and is thus itself signed, deviations
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in opposite directions could cancel each other. Thus the note accuracy measures a bias or

systematic deviation to lower (αN < 0) or higher (αN > 0) pitches rather than accuracy per

se. In unaccompanied singing, and hence in our study, there is no absolute reference pitch

and hence this measure is not meaningful. Furthermore, as higher absolute values of αN

indicate less accuracy, we prefer the term pitch bias or pitch offset.

Note precision is defined as the mean standard deviation of pitches. Hence, if there are

K pitch classes, with Mj instances of pitch class Pj having a mean µj, the variance s2j for

the pitch class is given by:

s2j =
1

Mj − 1

∑
pi∈Pj

(pi − µj)
2.

The note precision πN is thus:

πN =
1

K

K∑
j=1

sj.

As a mean standard deviation, note precision is unsigned and positive definite. The larger

the value, the more dispersed are the sung pitches in each pitch class, the smaller the value,

the more consistently the pitches are produced. Again an alternative term such as pitch

spread would be more appropriate.

Interval accuracy is defined as the mean deviation of sung intervals ∆pi = pi+1−pi from

target intervals:

αI =
1

M − 1

M−1∑
i=1

|∆pi| − |∆p0i |.

Interval accuracy is itself signed. The sign indicates systematic deviations to smaller (αI < 0)

or larger (αI > 0) intervals. As there is no distinction between ascending and descending

intervals, two problems arise: the interval accuracy erroneously assesses an interval of the

correct magnitude but wrong direction as being accurate; and a tendency to drift, for exam-

ple to sing flat (downward pitch drift), is not captured, as this results in smaller ascending

intervals but larger descending intervals, which cancel if the error magnitudes match.

Finally, interval precision is defined as the mean standard deviation of interval errors.

Hence, if there are K interval classes Ij each having Mj instances with a mean of µj, the
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variance s2j is given by:

s2j =
1

Mj − 1

∑
∆pi∈Ij

(∆pi − µj)
2

and the interval precision πI is thus:

πI =
1

K

K∑
j=1

sj.

Once again, this is a measure of spread, with lower values indicating greater precision, so

an alternative name such as interval spread would be preferable.

As a concrete example, consider a case where every interval of m semitones (in either

direction) is sung m cents flat, the sum of all ascending intervals is n semitones, and the

first and last note of the piece are the same nominal pitch. Then it can be shown that the

interval accuracy αI = 0, the interval precision πI = 0, but the piece has drifted by 2n cents

downwards.
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Musical Background Choir Experience

None 1 None 5

Amateur 14 As a child 3

Semi-professional 7 No longer active 5

Professional 2 Still active 11

Singing Skill Singing Experience

Poor 1 None 3

Low 3 Some 6

Medium 14 A lot 13

High 4 Professional 1

Very High 2 (no response) 1

TABLE I: Self-reported musical experience.
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sg.abl 0.40 0.31 0.54 -0.45 -0.46 0.11 -0.02 0.06

sg.exp -0.07 0.42 -0.16 -0.27 0.20 0.05 0.11

mus.bg 0.34 -0.16 -0.24 0.10 -0.02 0.05

ch.exp -0.37 -0.40 0.22 0.01 0.07

MAIE 0.93 -0.19 -0.01 -0.06

MAPE -0.19 -0.01 -0.04

DL 0.52 0.94

|D| 0.54

D

TABLE II: Spearman rank correlations of survey metadata (singing ability, singing

experience, musical background, choir experience) and measures of accuracy and drift.

Significant correlations (p < 0.01) are shown in bold.
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