f@5: /* f@5: f@16: Copyright (C) 2002 James McCartney. f@5: Copyright (C) 2016 Queen Mary University of London f@16: Author: Fiore Martin, based on Supercollider's (http://supercollider.github.io) TGrains code and Ross Bencina's "Implementing Real-Time Granular Synthesis" f@5: f@5: This file is part of Collidoscope. f@5: f@5: Collidoscope is free software: you can redistribute it and/or modify f@5: it under the terms of the GNU General Public License as published by f@5: the Free Software Foundation, either version 3 of the License, or f@5: (at your option) any later version. f@5: f@5: This program is distributed in the hope that it will be useful, f@5: but WITHOUT ANY WARRANTY; without even the implied warranty of f@5: MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the f@5: GNU General Public License for more details. f@5: f@5: You should have received a copy of the GNU General Public License f@5: along with this program. If not, see . f@5: */ f@5: f@0: #pragma once f@0: f@0: #include f@0: #include f@0: f@0: #include "EnvASR.h" f@0: f@0: f@0: namespace collidoscope { f@0: f@0: using std::size_t; f@0: f@3: /** f@3: * The very core of the Collidoscope audio engine: the granular synthesizer. f@16: * Based on SuperCollider's TGrains and Ross Bencina's "Implementing Real-Time Granular Synthesis" f@3: * f@3: * It implements Collidoscope's selection-based approach to granular synthesis. f@3: * A grain is basically a selection of a recorded sample of audio. f@16: * Grains are played in a loop: they are re-triggered each time they reach the end of the selection. f@16: * However, if the duration coefficient is greater than one, a new grain is re-triggered before the previous one is done, f@16: * the grains start to overlap with each other and create the typical eerie sound of grnular synthesis. f@3: * Also every time a new grain is triggered, it is offset of a few samples from the initial position to make the timbre more interesting. f@3: * f@3: * f@3: * PGranular uses a linear ASR envelope with 10 milliseconds attack and 50 milliseconds release. f@3: * f@3: * Note that PGranular is header based and only depends on std library and on "EnvASR.h" (also header based). f@3: * This means you can embedd it in two your project just by copying these two files over. f@3: * f@3: * Template arguments: f@3: * T: type of the audio samples (normally float or double) f@3: * RandOffsetFunc: type of the callable passed as argument to the contructor f@3: * TriggerCallbackFunc: type of the callable passed as argument to the contructor f@3: * f@3: */ f@0: template f@0: class PGranular f@0: { f@0: f@0: public: f@0: static const size_t kMaxGrains = 32; f@0: static const size_t kMinGrainsDuration = 640; f@0: f@0: static inline T interpolateLin( double xn, double xn_1, double decimal ) f@0: { f@0: /* weighted sum interpolation */ f@0: return static_cast ((1 - decimal) * xn + decimal * xn_1); f@0: } f@0: f@3: /** f@3: * A single grain of the granular synthesis f@3: */ f@0: struct PGrain f@0: { f@0: double phase; // read pointer to mBuffer of this grain f@0: double rate; // rate of the grain. e.g. rate = 2 the grain will play twice as fast f@16: bool alive; // whether this grain is alive. Not alive means it has been processed and can be replaced by another grain f@0: size_t age; // age of this grain in samples f@0: size_t duration; // duration of this grain in samples. minimum = 4 f@0: f@3: double b1; // hann envelope from Ross Becina's "Implementing real time Granular Synthesis" f@0: double y1; f@0: double y2; f@0: }; f@0: f@0: f@0: f@3: /** f@3: * Constructor. f@3: * f@3: * \param buffer a pointer to an array of T that contains the original sample that will be granulized f@3: * \param bufferLen length of buffer in samples f@16: * \rand function of type size_t ()(void) that is called back each time a new grain is generated. The returned value is used f@3: * to offset the starting sample of the grain. This adds more colour to the sound especially with small selections. f@16: * \triggerCallback function of type void ()(char, int) that is called back each time a new grain is generated. f@16: * The function is passed the character 't' as first parameter when a new grain is triggered and the characted 'e' when the synth becomes idle (no sound). f@16: * \ID id of this PGrain. Passed to the triggerCallback function as second parameter to identify this PGranular as the caller. f@3: */ f@0: PGranular( const T* buffer, size_t bufferLen, size_t sampleRate, RandOffsetFunc & rand, TriggerCallbackFunc & triggerCallback, int ID ) : f@0: mBuffer( buffer ), f@0: mBufferLen( bufferLen ), f@0: mNumAliveGrains( 0 ), f@0: mGrainsRate( 1.0 ), f@0: mTrigger( 0 ), f@0: mTriggerRate( 0 ), // start silent f@0: mGrainsStart( 0 ), f@0: mGrainsDuration( kMinGrainsDuration ), f@0: mGrainsDurationCoeff( 1 ), f@0: mRand( rand ), f@0: mTriggerCallback( triggerCallback ), f@0: mEnvASR( 1.0f, 0.01f, 0.05f, sampleRate ), f@0: mAttenuation( T(0.25118864315096) ), f@0: mID( ID ) f@0: { f@0: static_assert(std::is_pod::value, "PGrain must be POD"); f@0: #ifdef _WINDOW f@0: static_assert(std::is_same::type, size_t>::value, "Rand must return a size_t"); f@0: #endif f@0: /* init the grains */ f@0: for ( size_t grainIdx = 0; grainIdx < kMaxGrains; grainIdx++ ){ f@0: mGrains[grainIdx].phase = 0; f@0: mGrains[grainIdx].rate = 1; f@0: mGrains[grainIdx].alive = false; f@0: mGrains[grainIdx].age = 0; f@0: mGrains[grainIdx].duration = 1; f@0: } f@0: } f@0: f@0: ~PGranular(){} f@0: f@3: /** Sets multiplier of duration of grains in seconds */ f@0: void setGrainsDurationCoeff( double coeff ) f@0: { f@0: mGrainsDurationCoeff = coeff; f@0: f@3: mGrainsDuration = std::lround( mTriggerRate * coeff ); f@0: f@0: if ( mGrainsDuration < kMinGrainsDuration ) f@0: mGrainsDuration = kMinGrainsDuration; f@0: } f@0: f@3: /** Sets rate of grains. e.g rate = 2 means one octave higer */ f@0: void setGrainsRate( double rate ) f@0: { f@0: mGrainsRate = rate; f@0: } f@0: f@3: /** sets the selection start in samples */ f@0: void setSelectionStart( size_t start ) f@0: { f@0: mGrainsStart = start; f@0: } f@0: f@3: /** Sets the selection size ( and therefore the trigger rate) in samples */ f@0: void setSelectionSize( size_t size ) f@0: { f@0: f@0: if ( size < kMinGrainsDuration ) f@0: size = kMinGrainsDuration; f@0: f@0: mTriggerRate = size; f@0: f@0: mGrainsDuration = std::lround( size * mGrainsDurationCoeff ); f@0: f@0: f@0: } f@0: f@3: /** Sets the attenuation of the grains with respect to the level of the recorded sample f@3: * attenuation is in amp value and defaule value is 0.25118864315096 (-12dB) */ f@0: void setAttenuation( T attenuation ) f@0: { f@0: mAttenuation = attenuation; f@0: } f@0: f@3: /** Starts the synthesis engine */ f@0: void noteOn( double rate ) f@0: { f@0: if ( mEnvASR.getState() == EnvASR::State::eIdle ){ f@0: // note on sets triggering top the min value f@0: if ( mTriggerRate < kMinGrainsDuration ){ f@0: mTriggerRate = kMinGrainsDuration; f@0: } f@0: f@0: setGrainsRate( rate ); f@0: mEnvASR.setState( EnvASR::State::eAttack ); f@0: } f@0: } f@0: f@3: /** Stops the synthesis engine */ f@0: void noteOff() f@0: { f@0: if ( mEnvASR.getState() != EnvASR::State::eIdle ){ f@0: mEnvASR.setState( EnvASR::State::eRelease ); f@0: } f@0: } f@0: f@3: /** Whether the synthesis engine is active or not. After noteOff is called the synth stays active until the envelope decays to 0 */ f@0: bool isIdle() f@0: { f@0: return mEnvASR.getState() == EnvASR::State::eIdle; f@0: } f@0: f@3: /** f@3: * Runs the granular engine and stores the output in \a audioOut f@3: * f@16: * \param pointer to an array of T. This will be filled with the output of PGranular. It needs to be at least \a numSamples long f@16: * \param tempBuffer a temporary buffer used to store the envelope value. It needs to be at least \a numSamples long f@3: * \param numSamples number of samples to be processed f@3: */ f@0: void process( T* audioOut, T* tempBuffer, size_t numSamples ) f@0: { f@0: f@0: // num samples worth of sound ( due to envelope possibly finishing ) f@0: size_t envSamples = 0; f@0: bool becameIdle = false; f@0: f@3: // process the envelope first and store it in the tempBuffer f@0: for ( size_t i = 0; i < numSamples; i++ ){ f@0: tempBuffer[i] = mEnvASR.tick(); f@0: envSamples++; f@0: f@0: if ( isIdle() ){ f@0: // means that the envelope has stopped f@0: becameIdle = true; f@0: break; f@0: } f@0: } f@0: f@3: // does the actual grains processing f@0: processGrains( audioOut, tempBuffer, envSamples ); f@0: f@3: // becomes idle if the envelope goes to idle state f@0: if ( becameIdle ){ f@0: mTriggerCallback( 'e', mID ); f@0: reset(); f@0: } f@0: } f@0: f@0: private: f@0: f@0: void processGrains( T* audioOut, T* envelopeValues, size_t numSamples ) f@0: { f@0: f@0: /* process all existing alive grains */ f@0: for ( size_t grainIdx = 0; grainIdx < mNumAliveGrains; ){ f@0: synthesizeGrain( mGrains[grainIdx], audioOut, envelopeValues, numSamples ); f@0: f@0: if ( !mGrains[grainIdx].alive ){ f@3: // this grain is dead so copy the last of the active grains here f@0: // so as to keep all active grains at the beginning of the array f@0: // don't increment grainIdx so the last active grain is processed next cycle f@0: // if this grain is the last active grain then mNumAliveGrains is decremented f@0: // and grainIdx = mNumAliveGrains so the loop stops f@0: copyGrain( mNumAliveGrains - 1, grainIdx ); f@0: mNumAliveGrains--; f@0: } f@0: else{ f@0: // go to next grain f@0: grainIdx++; f@0: } f@0: } f@0: f@0: if ( mTriggerRate == 0 ){ f@0: return; f@0: } f@0: f@0: size_t randOffset = mRand(); f@0: bool newGrainWasTriggered = false; f@0: f@0: // trigger new grain and synthesize them as well f@0: while ( mTrigger < numSamples ){ f@0: f@0: // if there is room to accommodate new grains f@0: if ( mNumAliveGrains < kMaxGrains ){ f@0: // get next grain will be placed at the end of the alive ones f@0: size_t grainIdx = mNumAliveGrains; f@0: mNumAliveGrains++; f@0: f@0: // initialize and synthesise the grain f@0: PGrain &grain = mGrains[grainIdx]; f@0: f@0: double phase = mGrainsStart + double( randOffset ); f@0: if ( phase >= mBufferLen ) f@0: phase -= mBufferLen; f@0: f@0: grain.phase = phase; f@0: grain.rate = mGrainsRate; f@0: grain.alive = true; f@0: grain.age = 0; f@0: grain.duration = mGrainsDuration; f@0: f@0: const double w = 3.14159265358979323846 / mGrainsDuration; f@0: grain.b1 = 2.0 * std::cos( w ); f@0: grain.y1 = std::sin( w ); f@0: grain.y2 = 0.0; f@0: f@0: synthesizeGrain( grain, audioOut + mTrigger, envelopeValues + mTrigger, numSamples - mTrigger ); f@0: f@0: if ( grain.alive == false ) { f@0: mNumAliveGrains--; f@0: } f@0: f@0: newGrainWasTriggered = true; f@0: } f@0: f@0: // update trigger even if no new grain was started f@0: mTrigger += mTriggerRate; f@0: } f@0: f@0: // prepare trigger for next cycle: init mTrigger with the reminder of the samples from this cycle f@0: mTrigger -= numSamples; f@0: f@0: if ( newGrainWasTriggered ){ f@0: mTriggerCallback( 't', mID ); f@0: } f@0: } f@0: f@3: // synthesize a single grain f@0: // audioOut = pointer to audio block to fill f@16: // numSamples = number of samples to process for this block f@0: void synthesizeGrain( PGrain &grain, T* audioOut, T* envelopeValues, size_t numSamples ) f@0: { f@0: f@16: // copy all grain data into local variable for faster processing f@0: const auto rate = grain.rate; f@0: auto phase = grain.phase; f@0: auto age = grain.age; f@0: auto duration = grain.duration; f@0: f@0: f@0: auto b1 = grain.b1; f@0: auto y1 = grain.y1; f@0: auto y2 = grain.y2; f@0: f@0: // only process minimum between samples of this block and time left to leave for this grain f@0: auto numSamplesToOut = std::min( numSamples, duration - age ); f@0: f@0: for ( size_t sampleIdx = 0; sampleIdx < numSamplesToOut; sampleIdx++ ){ f@0: f@0: const size_t readIndex = (size_t)phase; f@0: const size_t nextReadIndex = (readIndex == mBufferLen - 1) ? 0 : readIndex + 1; // wrap on the read buffer if needed f@0: f@0: const double decimal = phase - readIndex; f@0: f@0: T out = interpolateLin( mBuffer[readIndex], mBuffer[nextReadIndex], decimal ); f@0: f@0: // apply raised cosine bell envelope f@0: auto y0 = b1 * y1 - y2; f@0: y2 = y1; f@0: y1 = y0; f@0: out *= T(y0); f@0: f@0: audioOut[sampleIdx] += out * envelopeValues[sampleIdx] * mAttenuation; f@0: f@0: // increment age one sample f@0: age++; f@0: // increment the phase according to the rate of this grain f@0: phase += rate; f@0: f@0: if ( phase >= mBufferLen ){ // wrap the phase if needed f@0: phase -= mBufferLen; f@0: } f@0: } f@0: f@0: if ( age == duration ){ f@16: // if it processed all the samples left to leave ( numSamplesToOut = duration-age) f@16: // then the grain is finished f@0: grain.alive = false; f@0: } f@0: else{ f@0: grain.phase = phase; f@0: grain.age = age; f@0: grain.y1 = y1; f@0: grain.y2 = y2; f@0: } f@0: } f@0: f@0: void copyGrain( size_t from, size_t to) f@0: { f@0: mGrains[to] = mGrains[from]; f@0: } f@0: f@0: void reset() f@0: { f@0: mTrigger = 0; f@0: for ( size_t i = 0; i < mNumAliveGrains; i++ ){ f@0: mGrains[i].alive = false; f@0: } f@0: f@0: mNumAliveGrains = 0; f@0: } f@0: f@0: int mID; f@0: f@0: // pointer to (mono) buffer, where the underlying sample is recorder f@0: const T* mBuffer; f@0: // length of mBuffer in samples f@0: const size_t mBufferLen; f@0: f@16: // offset in the buffer where the grains start. a.k.a. selection start f@0: size_t mGrainsStart; f@0: f@16: // attenuates signal prevents clipping of grains (to some degree) f@0: T mAttenuation; f@0: f@0: // grain duration in samples f@0: double mGrainsDurationCoeff; f@16: // duration of grains is selection size * duration coeff f@0: size_t mGrainsDuration; f@0: // rate of grain, affects pitch f@0: double mGrainsRate; f@0: f@0: size_t mTrigger; // next onset f@0: size_t mTriggerRate; // inter onset f@0: f@0: // the array of grains f@0: std::array mGrains; f@0: // number of alive grains f@0: size_t mNumAliveGrains; f@0: f@0: RandOffsetFunc &mRand; f@0: TriggerCallbackFunc &mTriggerCallback; f@0: f@0: EnvASR mEnvASR; f@0: }; f@0: f@0: f@0: f@0: f@0: } // namespace collidoscope f@0: f@0: