Mercurial > hg > nnls-chroma
view Chordino.cpp @ 35:cf8898a0174c matthiasm-plugin
* Split out NNLSChroma plugin into three plugins (chroma, chordino, tuning) with a common base class.
There's still quite a lot of duplication between the getRemainingFeatures functions.
Also add copyright / copying headers, etc.
author | Chris Cannam |
---|---|
date | Fri, 22 Oct 2010 11:30:21 +0100 |
parents | NNLSChroma.cpp@da3195577172 |
children | 7409ab74c63b |
line wrap: on
line source
/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */ /* NNLS-Chroma / Chordino Audio feature extraction plugins for chromagram and chord estimation. Centre for Digital Music, Queen Mary University of London. This file copyright 2008-2010 Matthias Mauch and QMUL. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. See the file COPYING included with this distribution for more information. */ #include "Chordino.h" #include "chromamethods.h" #include <cstdlib> #include <fstream> #include <cmath> #include <algorithm> const bool debug_on = false; const vector<float> hw(hammingwind, hammingwind+19); Chordino::Chordino(float inputSampleRate) : NNLSBase(inputSampleRate) { if (debug_on) cerr << "--> Chordino" << endl; } Chordino::~Chordino() { if (debug_on) cerr << "--> ~Chordino" << endl; } string Chordino::getIdentifier() const { if (debug_on) cerr << "--> getIdentifier" << endl; return "chordino"; } string Chordino::getName() const { if (debug_on) cerr << "--> getName" << endl; return "Chordino"; } string Chordino::getDescription() const { if (debug_on) cerr << "--> getDescription" << endl; return "This plugin provides a number of features derived from a log-frequency amplitude spectrum of the DFT: some variants of the log-frequency spectrum, including a semitone spectrum derived from approximate transcription using the NNLS algorithm; based on this semitone spectrum, chroma features and a simple chord estimate."; } Chordino::OutputList Chordino::getOutputDescriptors() const { if (debug_on) cerr << "--> getOutputDescriptors" << endl; OutputList list; int index = 0; OutputDescriptor d7; d7.identifier = "simplechord"; d7.name = "Simple Chord Estimate"; d7.description = "A simple chord estimate based on the inner product of chord templates with the smoothed chroma."; d7.unit = ""; d7.hasFixedBinCount = true; d7.binCount = 0; d7.hasKnownExtents = false; d7.isQuantized = false; d7.sampleType = OutputDescriptor::VariableSampleRate; d7.hasDuration = false; d7.sampleRate = (m_stepSize == 0) ? m_inputSampleRate/2048 : m_inputSampleRate/m_stepSize; list.push_back(d7); m_outputChords = index++; OutputDescriptor d8; d8.identifier = "harmonicchange"; d8.name = "Harmonic change value"; d8.description = "Harmonic change."; d8.unit = ""; d8.hasFixedBinCount = true; d8.binCount = 1; d8.hasKnownExtents = true; d8.minValue = 0.0; d8.maxValue = 0.999; d8.isQuantized = false; d8.sampleType = OutputDescriptor::FixedSampleRate; d8.hasDuration = false; // d8.sampleRate = (m_stepSize == 0) ? m_inputSampleRate/2048 : m_inputSampleRate/m_stepSize; list.push_back(d8); m_outputHarmonicChange = index++; return list; } bool Chordino::initialise(size_t channels, size_t stepSize, size_t blockSize) { if (debug_on) { cerr << "--> initialise"; } if (!NNLSBase::initialise(channels, stepSize, blockSize)) { return false; } return true; } void Chordino::reset() { if (debug_on) cerr << "--> reset"; NNLSBase::reset(); } Chordino::FeatureSet Chordino::process(const float *const *inputBuffers, Vamp::RealTime timestamp) { if (debug_on) cerr << "--> process" << endl; NNLSBase::baseProcess(inputBuffers, timestamp); return FeatureSet(); } Chordino::FeatureSet Chordino::getRemainingFeatures() { if (debug_on) cerr << "--> getRemainingFeatures" << endl; FeatureSet fsOut; if (m_logSpectrum.size() == 0) return fsOut; int nChord = m_chordnames.size(); // /** Calculate Tuning calculate tuning from (using the angle of the complex number defined by the cumulative mean real and imag values) **/ float meanTuningImag = sinvalue * m_meanTuning1 - sinvalue * m_meanTuning2; float meanTuningReal = m_meanTuning0 + cosvalue * m_meanTuning1 + cosvalue * m_meanTuning2; float cumulativetuning = 440 * pow(2,atan2(meanTuningImag, meanTuningReal)/(24*M_PI)); float normalisedtuning = atan2(meanTuningImag, meanTuningReal)/(2*M_PI); int intShift = floor(normalisedtuning * 3); float intFactor = normalisedtuning * 3 - intShift; // intFactor is a really bad name for this char buffer0 [50]; sprintf(buffer0, "estimated tuning: %0.1f Hz", cumulativetuning); /** Tune Log-Frequency Spectrogram calculate a tuned log-frequency spectrogram (f2): use the tuning estimated above (kinda f0) to perform linear interpolation on the existing log-frequency spectrogram (kinda f1). **/ cerr << endl << "[Chordino Plugin] Tuning Log-Frequency Spectrogram ... "; float tempValue = 0; float dbThreshold = 0; // relative to the background spectrum float thresh = pow(10,dbThreshold/20); // cerr << "tune local ? " << m_tuneLocal << endl; int count = 0; FeatureList tunedSpec; for (FeatureList::iterator i = m_logSpectrum.begin(); i != m_logSpectrum.end(); ++i) { Feature f1 = *i; Feature f2; // tuned log-frequency spectrum f2.hasTimestamp = true; f2.timestamp = f1.timestamp; f2.values.push_back(0.0); f2.values.push_back(0.0); // set lower edge to zero if (m_tuneLocal) { intShift = floor(m_localTuning[count] * 3); intFactor = m_localTuning[count] * 3 - intShift; // intFactor is a really bad name for this } // cerr << intShift << " " << intFactor << endl; for (unsigned k = 2; k < f1.values.size() - 3; ++k) { // interpolate all inner bins tempValue = f1.values[k + intShift] * (1-intFactor) + f1.values[k+intShift+1] * intFactor; f2.values.push_back(tempValue); } f2.values.push_back(0.0); f2.values.push_back(0.0); f2.values.push_back(0.0); // upper edge vector<float> runningmean = SpecialConvolution(f2.values,hw); vector<float> runningstd; for (int i = 0; i < 256; i++) { // first step: squared values into vector (variance) runningstd.push_back((f2.values[i] - runningmean[i]) * (f2.values[i] - runningmean[i])); } runningstd = SpecialConvolution(runningstd,hw); // second step convolve for (int i = 0; i < 256; i++) { runningstd[i] = sqrt(runningstd[i]); // square root to finally have running std if (runningstd[i] > 0) { // f2.values[i] = (f2.values[i] / runningmean[i]) > thresh ? // (f2.values[i] - runningmean[i]) / pow(runningstd[i],m_paling) : 0; f2.values[i] = (f2.values[i] - runningmean[i]) > 0 ? (f2.values[i] - runningmean[i]) / pow(runningstd[i],m_paling) : 0; } if (f2.values[i] < 0) { cerr << "ERROR: negative value in logfreq spectrum" << endl; } } tunedSpec.push_back(f2); count++; } cerr << "done." << endl; /** Semitone spectrum and chromagrams Semitone-spaced log-frequency spectrum derived from the tuned log-freq spectrum above. the spectrum is inferred using a non-negative least squares algorithm. Three different kinds of chromagram are calculated, "treble", "bass", and "both" (which means bass and treble stacked onto each other). **/ if (m_dictID == 1) { cerr << "[Chordino Plugin] Mapping to semitone spectrum and chroma ... "; } else { cerr << "[Chordino Plugin] Performing NNLS and mapping to chroma ... "; } vector<vector<float> > chordogram; vector<vector<int> > scoreChordogram; vector<float> chordchange = vector<float>(tunedSpec.size(),0); count = 0; FeatureList chromaList; for (FeatureList::iterator it = tunedSpec.begin(); it != tunedSpec.end(); ++it) { Feature f2 = *it; // logfreq spectrum Feature f6; // treble and bass chromagram f6.hasTimestamp = true; f6.timestamp = f2.timestamp; float b[256]; bool some_b_greater_zero = false; float sumb = 0; for (int i = 0; i < 256; i++) { // b[i] = m_dict[(256 * count + i) % (256 * 84)]; b[i] = f2.values[i]; sumb += b[i]; if (b[i] > 0) { some_b_greater_zero = true; } } // here's where the non-negative least squares algorithm calculates the note activation x vector<float> chroma = vector<float>(12, 0); vector<float> basschroma = vector<float>(12, 0); float currval; unsigned iSemitone = 0; if (some_b_greater_zero) { if (m_dictID == 1) { for (unsigned iNote = 2; iNote < nNote - 2; iNote += 3) { currval = 0; currval += b[iNote + 1 + -1] * 0.5; currval += b[iNote + 1 + 0] * 1.0; currval += b[iNote + 1 + 1] * 0.5; chroma[iSemitone % 12] += currval * treblewindow[iSemitone]; basschroma[iSemitone % 12] += currval * basswindow[iSemitone]; iSemitone++; } } else { float x[84+1000]; for (int i = 1; i < 1084; ++i) x[i] = 1.0; vector<int> signifIndex; int index=0; sumb /= 84.0; for (unsigned iNote = 2; iNote < nNote - 2; iNote += 3) { float currval = 0; currval += b[iNote + 1 + -1]; currval += b[iNote + 1 + 0]; currval += b[iNote + 1 + 1]; if (currval > 0) signifIndex.push_back(index); index++; } float rnorm; float w[84+1000]; float zz[84+1000]; int indx[84+1000]; int mode; int dictsize = 256*signifIndex.size(); float *curr_dict = new float[dictsize]; for (unsigned iNote = 0; iNote < signifIndex.size(); ++iNote) { for (unsigned iBin = 0; iBin < 256; iBin++) { curr_dict[iNote * 256 + iBin] = 1.0 * m_dict[signifIndex[iNote] * 256 + iBin]; } } nnls(curr_dict, nNote, nNote, signifIndex.size(), b, x, &rnorm, w, zz, indx, &mode); delete [] curr_dict; for (unsigned iNote = 0; iNote < signifIndex.size(); ++iNote) { // cerr << mode << endl; chroma[signifIndex[iNote] % 12] += x[iNote] * treblewindow[signifIndex[iNote]]; basschroma[signifIndex[iNote] % 12] += x[iNote] * basswindow[signifIndex[iNote]]; } } } vector<float> origchroma = chroma; chroma.insert(chroma.begin(), basschroma.begin(), basschroma.end()); // just stack the both chromas f6.values = chroma; if (m_doNormalizeChroma > 0) { vector<float> chromanorm = vector<float>(3,0); switch (int(m_doNormalizeChroma)) { case 0: // should never end up here break; case 1: chromanorm[0] = *max_element(origchroma.begin(), origchroma.end()); chromanorm[1] = *max_element(basschroma.begin(), basschroma.end()); chromanorm[2] = max(chromanorm[0], chromanorm[1]); break; case 2: for (vector<float>::iterator it = chroma.begin(); it != chroma.end(); ++it) { chromanorm[2] += *it; } break; case 3: for (vector<float>::iterator it = chroma.begin(); it != chroma.end(); ++it) { chromanorm[2] += pow(*it,2); } chromanorm[2] = sqrt(chromanorm[2]); break; } if (chromanorm[2] > 0) { for (int i = 0; i < chroma.size(); i++) { f6.values[i] /= chromanorm[2]; } } } chromaList.push_back(f6); // local chord estimation vector<float> currentChordSalience; float tempchordvalue = 0; float sumchordvalue = 0; for (int iChord = 0; iChord < nChord; iChord++) { tempchordvalue = 0; for (int iBin = 0; iBin < 12; iBin++) { tempchordvalue += m_chorddict[24 * iChord + iBin] * chroma[iBin]; } for (int iBin = 12; iBin < 24; iBin++) { tempchordvalue += m_chorddict[24 * iChord + iBin] * chroma[iBin]; } sumchordvalue+=tempchordvalue; currentChordSalience.push_back(tempchordvalue); } if (sumchordvalue > 0) { for (int iChord = 0; iChord < nChord; iChord++) { currentChordSalience[iChord] /= sumchordvalue; } } else { currentChordSalience[nChord-1] = 1.0; } chordogram.push_back(currentChordSalience); count++; } cerr << "done." << endl; /* Simple chord estimation I just take the local chord estimates ("currentChordSalience") and average them over time, then take the maximum. Very simple, don't do this at home... */ cerr << "[Chordino Plugin] Chord Estimation ... "; count = 0; int halfwindowlength = m_inputSampleRate / m_stepSize; vector<int> chordSequence; for (FeatureList::iterator it = chromaList.begin(); it != chromaList.end(); ++it) { // initialise the score chordogram vector<int> temp = vector<int>(nChord,0); scoreChordogram.push_back(temp); } for (FeatureList::iterator it = chromaList.begin(); it < chromaList.end()-2*halfwindowlength-1; ++it) { int startIndex = count + 1; int endIndex = count + 2 * halfwindowlength; float chordThreshold = 2.5/nChord;//*(2*halfwindowlength+1); vector<int> chordCandidates; for (unsigned iChord = 0; iChord < nChord-1; iChord++) { // float currsum = 0; // for (unsigned iFrame = startIndex; iFrame < endIndex; ++iFrame) { // currsum += chordogram[iFrame][iChord]; // } // if (currsum > chordThreshold) chordCandidates.push_back(iChord); for (unsigned iFrame = startIndex; iFrame < endIndex; ++iFrame) { if (chordogram[iFrame][iChord] > chordThreshold) { chordCandidates.push_back(iChord); break; } } } chordCandidates.push_back(nChord-1); // cerr << chordCandidates.size() << endl; float maxval = 0; // will be the value of the most salient *chord change* in this frame float maxindex = 0; //... and the index thereof unsigned bestchordL = nChord-1; // index of the best "left" chord unsigned bestchordR = nChord-1; // index of the best "right" chord for (int iWF = 1; iWF < 2*halfwindowlength; ++iWF) { // now find the max values on both sides of iWF // left side: float maxL = 0; unsigned maxindL = nChord-1; for (unsigned kChord = 0; kChord < chordCandidates.size(); kChord++) { unsigned iChord = chordCandidates[kChord]; float currsum = 0; for (unsigned iFrame = 0; iFrame < iWF-1; ++iFrame) { currsum += chordogram[count+iFrame][iChord]; } if (iChord == nChord-1) currsum *= 0.8; if (currsum > maxL) { maxL = currsum; maxindL = iChord; } } // right side: float maxR = 0; unsigned maxindR = nChord-1; for (unsigned kChord = 0; kChord < chordCandidates.size(); kChord++) { unsigned iChord = chordCandidates[kChord]; float currsum = 0; for (unsigned iFrame = iWF-1; iFrame < 2*halfwindowlength; ++iFrame) { currsum += chordogram[count+iFrame][iChord]; } if (iChord == nChord-1) currsum *= 0.8; if (currsum > maxR) { maxR = currsum; maxindR = iChord; } } if (maxL+maxR > maxval) { maxval = maxL+maxR; maxindex = iWF; bestchordL = maxindL; bestchordR = maxindR; } } // cerr << "maxindex: " << maxindex << ", bestchordR is " << bestchordR << ", of frame " << count << endl; // add a score to every chord-frame-point that was part of a maximum for (unsigned iFrame = 0; iFrame < maxindex-1; ++iFrame) { scoreChordogram[iFrame+count][bestchordL]++; } for (unsigned iFrame = maxindex-1; iFrame < 2*halfwindowlength; ++iFrame) { scoreChordogram[iFrame+count][bestchordR]++; } if (bestchordL != bestchordR) chordchange[maxindex+count] += (halfwindowlength - abs(maxindex-halfwindowlength)) * 2.0 / halfwindowlength; count++; } // cerr << "******* agent finished *******" << endl; count = 0; for (FeatureList::iterator it = chromaList.begin(); it != chromaList.end(); ++it) { float maxval = 0; // will be the value of the most salient chord in this frame float maxindex = 0; //... and the index thereof for (unsigned iChord = 0; iChord < nChord; iChord++) { if (scoreChordogram[count][iChord] > maxval) { maxval = scoreChordogram[count][iChord]; maxindex = iChord; // cerr << iChord << endl; } } chordSequence.push_back(maxindex); // cerr << "before modefilter, maxindex: " << maxindex << endl; count++; } // cerr << "******* mode filter done *******" << endl; // mode filter on chordSequence count = 0; string oldChord = ""; for (FeatureList::iterator it = chromaList.begin(); it != chromaList.end(); ++it) { Feature f6 = *it; Feature f7; // chord estimate f7.hasTimestamp = true; f7.timestamp = f6.timestamp; Feature f8; // chord estimate f8.hasTimestamp = true; f8.timestamp = f6.timestamp; vector<int> chordCount = vector<int>(nChord,0); int maxChordCount = 0; int maxChordIndex = nChord-1; string maxChord; int startIndex = max(count - halfwindowlength/2,0); int endIndex = min(int(chordogram.size()), count + halfwindowlength/2); for (int i = startIndex; i < endIndex; i++) { chordCount[chordSequence[i]]++; if (chordCount[chordSequence[i]] > maxChordCount) { // cerr << "start index " << startIndex << endl; maxChordCount++; maxChordIndex = chordSequence[i]; maxChord = m_chordnames[maxChordIndex]; } } // chordSequence[count] = maxChordIndex; // cerr << maxChordIndex << endl; f8.values.push_back(chordchange[count]/(halfwindowlength*2)); // cerr << chordchange[count] << endl; fsOut[m_outputHarmonicChange].push_back(f8); if (oldChord != maxChord) { oldChord = maxChord; f7.label = m_chordnames[maxChordIndex]; fsOut[m_outputChords].push_back(f7); } count++; } Feature f7; // last chord estimate f7.hasTimestamp = true; f7.timestamp = chromaList[chromaList.size()-1].timestamp; f7.label = "N"; fsOut[m_outputChords].push_back(f7); cerr << "done." << endl; return fsOut; }