Mercurial > hg > nnls-chroma
view Chordino.cpp @ 112:846b552ea3b0 monophonicness
Harte syntax as option in Chordino
author | Matthias Mauch <mail@matthiasmauch.net> |
---|---|
date | Tue, 29 Mar 2011 15:12:19 +0100 |
parents | 96cea9c05046 |
children | 5bcba43e2317 |
line wrap: on
line source
/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */ /* NNLS-Chroma / Chordino Audio feature extraction plugins for chromagram and chord estimation. Centre for Digital Music, Queen Mary University of London. This file copyright 2008-2010 Matthias Mauch and QMUL. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. See the file COPYING included with this distribution for more information. */ #include "Chordino.h" #include "chromamethods.h" #include "viterbi.h" #include <cstdlib> #include <fstream> #include <cmath> #include <algorithm> const bool debug_on = false; Chordino::Chordino(float inputSampleRate) : NNLSBase(inputSampleRate), m_chorddict(0), m_chordnotes(0), m_chordnames(0) { if (debug_on) cerr << "--> Chordino" << endl; // get the *chord* dictionary from file (if the file exists) } Chordino::~Chordino() { if (debug_on) cerr << "--> ~Chordino" << endl; } string Chordino::getIdentifier() const { if (debug_on) cerr << "--> getIdentifier" << endl; return "chordino"; } string Chordino::getName() const { if (debug_on) cerr << "--> getName" << endl; return "Chordino"; } string Chordino::getDescription() const { if (debug_on) cerr << "--> getDescription" << endl; return "Chordino provides a simple chord transcription based on NNLS Chroma (as in the NNLS Chroma plugin). Chord profiles given by the user in the file chord.dict are used to calculate frame-wise chord similarities. Two simple (non-state-of-the-art!) algorithms are available that smooth these to provide a chord transcription: a simple chord change method, and a standard HMM/Viterbi approach."; } Chordino::ParameterList Chordino::getParameterDescriptors() const { if (debug_on) cerr << "--> getParameterDescriptors" << endl; ParameterList list; ParameterDescriptor d; d.identifier = "useNNLS"; d.name = "use approximate transcription (NNLS)"; d.description = "Toggles approximate transcription (NNLS)."; d.unit = ""; d.minValue = 0.0; d.maxValue = 1.0; d.defaultValue = 1.0; d.isQuantized = true; d.quantizeStep = 1.0; list.push_back(d); ParameterDescriptor d4; d4.identifier = "useHMM"; d4.name = "HMM (Viterbi decoding)"; d4.description = "Turns on Viterbi decoding (when off, the simple chord estimator is used)."; d4.unit = ""; d4.minValue = 0.0; d4.maxValue = 1.0; d4.defaultValue = 1.0; d4.isQuantized = true; d4.quantizeStep = 1.0; list.push_back(d4); ParameterDescriptor d0; d0.identifier = "rollon"; d0.name = "spectral roll-on"; d0.description = "Consider the cumulative energy spectrum (from low to high frequencies). All bins below the first bin whose cumulative energy exceeds the quantile [spectral roll on] x [total energy] will be set to 0. A value of 0 means that no bins will be changed."; d0.unit = "%"; d0.minValue = 0; d0.maxValue = 5; d0.defaultValue = 0.0; d0.isQuantized = true; d0.quantizeStep = 0.5; list.push_back(d0); ParameterDescriptor d1; d1.identifier = "tuningmode"; d1.name = "tuning mode"; d1.description = "Tuning can be performed locally or on the whole extraction segment. Local tuning is only advisable when the tuning is likely to change over the audio, for example in podcasts, or in a cappella singing."; d1.unit = ""; d1.minValue = 0; d1.maxValue = 1; d1.defaultValue = 0.0; d1.isQuantized = true; d1.valueNames.push_back("global tuning"); d1.valueNames.push_back("local tuning"); d1.quantizeStep = 1.0; list.push_back(d1); ParameterDescriptor d2; d2.identifier = "whitening"; d2.name = "spectral whitening"; d2.description = "Spectral whitening: no whitening - 0; whitening - 1."; d2.unit = ""; d2.isQuantized = true; d2.minValue = 0.0; d2.maxValue = 1.0; d2.defaultValue = 1.0; d2.isQuantized = false; list.push_back(d2); ParameterDescriptor d3; d3.identifier = "s"; d3.name = "spectral shape"; d3.description = "Determines how individual notes in the note dictionary look: higher values mean more dominant higher harmonics."; d3.unit = ""; d3.minValue = 0.5; d3.maxValue = 0.9; d3.defaultValue = 0.7; d3.isQuantized = false; list.push_back(d3); ParameterDescriptor boostn; boostn.identifier = "boostn"; boostn.name = "boost N"; boostn.description = "Boost likelihood of the N (no chord) label."; boostn.unit = ""; boostn.minValue = 0.0; boostn.maxValue = 1.0; boostn.defaultValue = 0.1; boostn.isQuantized = false; list.push_back(boostn); ParameterDescriptor usehartesyntax; usehartesyntax.identifier = "usehartesyntax"; usehartesyntax.name = "use Harte syntax"; usehartesyntax.description = "Use the chord syntax proposed by Harte"; usehartesyntax.unit = ""; usehartesyntax.minValue = 0.0; usehartesyntax.maxValue = 1.0; usehartesyntax.defaultValue = 0.0; usehartesyntax.isQuantized = true; usehartesyntax.quantizeStep = 1.0; usehartesyntax.valueNames.push_back("no"); usehartesyntax.valueNames.push_back("yes"); list.push_back(usehartesyntax); return list; } Chordino::OutputList Chordino::getOutputDescriptors() const { if (debug_on) cerr << "--> getOutputDescriptors" << endl; OutputList list; int index = 0; OutputDescriptor d7; d7.identifier = "simplechord"; d7.name = "Chord Estimate"; d7.description = "Estimated chord times and labels. Two simple (non-state-of-the-art!) algorithms are available that smooth these to provide a chord transcription: a simple chord change method, and a standard HMM/Viterbi approach."; d7.unit = ""; d7.hasFixedBinCount = true; d7.binCount = 0; d7.hasKnownExtents = false; d7.isQuantized = false; d7.sampleType = OutputDescriptor::VariableSampleRate; d7.hasDuration = false; d7.sampleRate = (m_stepSize == 0) ? m_inputSampleRate/2048 : m_inputSampleRate/m_stepSize; list.push_back(d7); m_outputChords = index++; OutputDescriptor chordnotes; chordnotes.identifier = "chordnotes"; chordnotes.name = "Note Representation of Chord Estimate"; chordnotes.description = "A simple represenation of the estimated chord with bass note (if applicable) and chord notes."; chordnotes.unit = "MIDI units"; chordnotes.hasFixedBinCount = true; chordnotes.binCount = 1; chordnotes.hasKnownExtents = true; chordnotes.minValue = 0; chordnotes.maxValue = 127; chordnotes.isQuantized = true; chordnotes.quantizeStep = 1; chordnotes.sampleType = OutputDescriptor::VariableSampleRate; chordnotes.hasDuration = true; chordnotes.sampleRate = (m_stepSize == 0) ? m_inputSampleRate/2048 : m_inputSampleRate/m_stepSize; list.push_back(chordnotes); m_outputChordnotes = index++; OutputDescriptor d8; d8.identifier = "harmonicchange"; d8.name = "Harmonic Change Value"; d8.description = "An indication of the likelihood of harmonic change. Depends on the chord dictionary. Calculation is different depending on whether the Viterbi algorithm is used for chord estimation, or the simple chord estimate."; d8.unit = ""; d8.hasFixedBinCount = true; d8.binCount = 1; d8.hasKnownExtents = false; // d8.minValue = 0.0; // d8.maxValue = 0.999; d8.isQuantized = false; d8.sampleType = OutputDescriptor::FixedSampleRate; d8.hasDuration = false; // d8.sampleRate = (m_stepSize == 0) ? m_inputSampleRate/2048 : m_inputSampleRate/m_stepSize; list.push_back(d8); m_outputHarmonicChange = index++; OutputDescriptor loglikelihood; loglikelihood.identifier = "loglikelihood"; loglikelihood.name = "chord estimate log-likelihood"; loglikelihood.description = "."; loglikelihood.unit = ""; loglikelihood.hasFixedBinCount = true; loglikelihood.binCount = 1; loglikelihood.hasKnownExtents = false; loglikelihood.isQuantized = false; loglikelihood.sampleType = OutputDescriptor::FixedSampleRate; loglikelihood.hasDuration = false; // loglikelihood.sampleRate = (m_stepSize == 0) ? m_inputSampleRate/2048 : m_inputSampleRate/m_stepSize; list.push_back(loglikelihood); m_outputLoglikelihood = index++; return list; } bool Chordino::initialise(size_t channels, size_t stepSize, size_t blockSize) { if (debug_on) { cerr << "--> initialise"; } if (!NNLSBase::initialise(channels, stepSize, blockSize)) { return false; } m_chordnames = chordDictionary(&m_chorddict, &m_chordnotes, m_boostN, m_useHarte); return true; } void Chordino::reset() { if (debug_on) cerr << "--> reset"; NNLSBase::reset(); } Chordino::FeatureSet Chordino::process(const float *const *inputBuffers, Vamp::RealTime timestamp) { if (debug_on) cerr << "--> process" << endl; NNLSBase::baseProcess(inputBuffers, timestamp); return FeatureSet(); } Chordino::FeatureSet Chordino::getRemainingFeatures() { // cerr << hw[0] << hw[1] << endl; if (debug_on) cerr << "--> getRemainingFeatures" << endl; FeatureSet fsOut; if (m_logSpectrum.size() == 0) return fsOut; int nChord = m_chordnames.size(); // /** Calculate Tuning calculate tuning from (using the angle of the complex number defined by the cumulative mean real and imag values) **/ float meanTuningImag = 0; float meanTuningReal = 0; for (int iBPS = 0; iBPS < nBPS; ++iBPS) { meanTuningReal += m_meanTunings[iBPS] * cosvalues[iBPS]; meanTuningImag += m_meanTunings[iBPS] * sinvalues[iBPS]; } float cumulativetuning = 440 * pow(2,atan2(meanTuningImag, meanTuningReal)/(24*M_PI)); float normalisedtuning = atan2(meanTuningImag, meanTuningReal)/(2*M_PI); int intShift = floor(normalisedtuning * 3); float floatShift = normalisedtuning * 3 - intShift; // floatShift is a really bad name for this char buffer0 [50]; sprintf(buffer0, "estimated tuning: %0.1f Hz", cumulativetuning); /** Tune Log-Frequency Spectrogram calculate a tuned log-frequency spectrogram (currentTunedSpec): use the tuning estimated above (kinda f0) to perform linear interpolation on the existing log-frequency spectrogram (kinda currentLogSpectrum). **/ cerr << endl << "[Chordino Plugin] Tuning Log-Frequency Spectrogram ... "; float tempValue = 0; float dbThreshold = 0; // relative to the background spectrum float thresh = pow(10,dbThreshold/20); // cerr << "tune local ? " << m_tuneLocal << endl; int count = 0; FeatureList tunedSpec; int nFrame = m_logSpectrum.size(); vector<Vamp::RealTime> timestamps; for (FeatureList::iterator i = m_logSpectrum.begin(); i != m_logSpectrum.end(); ++i) { Feature currentLogSpectrum = *i; Feature currentTunedSpec; // tuned log-frequency spectrum currentTunedSpec.hasTimestamp = true; currentTunedSpec.timestamp = currentLogSpectrum.timestamp; timestamps.push_back(currentLogSpectrum.timestamp); currentTunedSpec.values.push_back(0.0); currentTunedSpec.values.push_back(0.0); // set lower edge to zero if (m_tuneLocal) { intShift = floor(m_localTuning[count] * 3); floatShift = m_localTuning[count] * 3 - intShift; // floatShift is a really bad name for this } // cerr << intShift << " " << floatShift << endl; for (int k = 2; k < (int)currentLogSpectrum.values.size() - 3; ++k) { // interpolate all inner bins tempValue = currentLogSpectrum.values[k + intShift] * (1-floatShift) + currentLogSpectrum.values[k+intShift+1] * floatShift; currentTunedSpec.values.push_back(tempValue); } currentTunedSpec.values.push_back(0.0); currentTunedSpec.values.push_back(0.0); currentTunedSpec.values.push_back(0.0); // upper edge vector<float> runningmean = SpecialConvolution(currentTunedSpec.values,hw); vector<float> runningstd; for (int i = 0; i < nNote; i++) { // first step: squared values into vector (variance) runningstd.push_back((currentTunedSpec.values[i] - runningmean[i]) * (currentTunedSpec.values[i] - runningmean[i])); } runningstd = SpecialConvolution(runningstd,hw); // second step convolve for (int i = 0; i < nNote; i++) { runningstd[i] = sqrt(runningstd[i]); // square root to finally have running std if (runningstd[i] > 0) { // currentTunedSpec.values[i] = (currentTunedSpec.values[i] / runningmean[i]) > thresh ? // (currentTunedSpec.values[i] - runningmean[i]) / pow(runningstd[i],m_whitening) : 0; currentTunedSpec.values[i] = (currentTunedSpec.values[i] - runningmean[i]) > 0 ? (currentTunedSpec.values[i] - runningmean[i]) / pow(runningstd[i],m_whitening) : 0; } if (currentTunedSpec.values[i] < 0) { cerr << "ERROR: negative value in logfreq spectrum" << endl; } } tunedSpec.push_back(currentTunedSpec); count++; } cerr << "done." << endl; /** Semitone spectrum and chromagrams Semitone-spaced log-frequency spectrum derived from the tuned log-freq spectrum above. the spectrum is inferred using a non-negative least squares algorithm. Three different kinds of chromagram are calculated, "treble", "bass", and "both" (which means bass and treble stacked onto each other). **/ if (m_useNNLS == 0) { cerr << "[Chordino Plugin] Mapping to semitone spectrum and chroma ... "; } else { cerr << "[Chordino Plugin] Performing NNLS and mapping to chroma ... "; } vector<vector<double> > chordogram; vector<vector<int> > scoreChordogram; vector<float> chordchange = vector<float>(tunedSpec.size(),0); count = 0; FeatureList chromaList; for (FeatureList::iterator it = tunedSpec.begin(); it != tunedSpec.end(); ++it) { Feature currentTunedSpec = *it; // logfreq spectrum Feature currentChromas; // treble and bass chromagram currentChromas.hasTimestamp = true; currentChromas.timestamp = currentTunedSpec.timestamp; float b[nNote]; bool some_b_greater_zero = false; float sumb = 0; for (int i = 0; i < nNote; i++) { // b[i] = m_dict[(nNote * count + i) % (nNote * 84)]; b[i] = currentTunedSpec.values[i]; sumb += b[i]; if (b[i] > 0) { some_b_greater_zero = true; } } // here's where the non-negative least squares algorithm calculates the note activation x vector<float> chroma = vector<float>(12, 0); vector<float> basschroma = vector<float>(12, 0); float currval; int iSemitone = 0; if (some_b_greater_zero) { if (m_useNNLS == 0) { for (int iNote = nBPS/2 + 2; iNote < nNote - nBPS/2; iNote += nBPS) { currval = 0; for (int iBPS = -nBPS/2; iBPS < nBPS/2+1; ++iBPS) { currval += b[iNote + iBPS] * (1-abs(iBPS*1.0/(nBPS/2+1))); } chroma[iSemitone % 12] += currval * treblewindow[iSemitone]; basschroma[iSemitone % 12] += currval * basswindow[iSemitone]; iSemitone++; } } else { float x[84+1000]; for (int i = 1; i < 1084; ++i) x[i] = 1.0; vector<int> signifIndex; int index=0; sumb /= 84.0; for (int iNote = nBPS/2 + 2; iNote < nNote - nBPS/2; iNote += nBPS) { float currval = 0; for (int iBPS = -nBPS/2; iBPS < nBPS/2+1; ++iBPS) { currval += b[iNote + iBPS]; } if (currval > 0) signifIndex.push_back(index); index++; } float rnorm; float w[84+1000]; float zz[84+1000]; int indx[84+1000]; int mode; int dictsize = nNote*signifIndex.size(); // cerr << "dictsize is " << dictsize << "and values size" << f3.values.size()<< endl; float *curr_dict = new float[dictsize]; for (int iNote = 0; iNote < (int)signifIndex.size(); ++iNote) { for (int iBin = 0; iBin < nNote; iBin++) { curr_dict[iNote * nNote + iBin] = 1.0 * m_dict[signifIndex[iNote] * nNote + iBin]; } } nnls(curr_dict, nNote, nNote, signifIndex.size(), b, x, &rnorm, w, zz, indx, &mode); delete [] curr_dict; for (int iNote = 0; iNote < (int)signifIndex.size(); ++iNote) { // cerr << mode << endl; chroma[signifIndex[iNote] % 12] += x[iNote] * treblewindow[signifIndex[iNote]]; basschroma[signifIndex[iNote] % 12] += x[iNote] * basswindow[signifIndex[iNote]]; } } } vector<float> origchroma = chroma; chroma.insert(chroma.begin(), basschroma.begin(), basschroma.end()); // just stack the both chromas currentChromas.values = chroma; if (m_doNormalizeChroma > 0) { vector<float> chromanorm = vector<float>(3,0); switch (int(m_doNormalizeChroma)) { case 0: // should never end up here break; case 1: chromanorm[0] = *max_element(origchroma.begin(), origchroma.end()); chromanorm[1] = *max_element(basschroma.begin(), basschroma.end()); chromanorm[2] = max(chromanorm[0], chromanorm[1]); break; case 2: for (vector<float>::iterator it = chroma.begin(); it != chroma.end(); ++it) { chromanorm[2] += *it; } break; case 3: for (vector<float>::iterator it = chroma.begin(); it != chroma.end(); ++it) { chromanorm[2] += pow(*it,2); } chromanorm[2] = sqrt(chromanorm[2]); break; } if (chromanorm[2] > 0) { for (int i = 0; i < (int)chroma.size(); i++) { currentChromas.values[i] /= chromanorm[2]; } } } chromaList.push_back(currentChromas); // local chord estimation vector<double> currentChordSalience; double tempchordvalue = 0; double sumchordvalue = 0; for (int iChord = 0; iChord < nChord; iChord++) { tempchordvalue = 0; for (int iBin = 0; iBin < 12; iBin++) { tempchordvalue += m_chorddict[24 * iChord + iBin] * chroma[iBin]; } for (int iBin = 12; iBin < 24; iBin++) { tempchordvalue += m_chorddict[24 * iChord + iBin] * chroma[iBin]; } if (iChord == nChord-1) tempchordvalue *= .7; if (tempchordvalue < 0) tempchordvalue = 0.0; tempchordvalue = pow(1.3,tempchordvalue); sumchordvalue+=tempchordvalue; currentChordSalience.push_back(tempchordvalue); } if (sumchordvalue > 0) { for (int iChord = 0; iChord < nChord; iChord++) { currentChordSalience[iChord] /= sumchordvalue; } } else { currentChordSalience[nChord-1] = 1.0; } chordogram.push_back(currentChordSalience); count++; } cerr << "done." << endl; vector<Feature> oldnotes; // bool m_useHMM = true; // this will go into the chordino header file. if (m_useHMM == 1.0) { cerr << "[Chordino Plugin] HMM Chord Estimation ... "; int oldchord = nChord-1; double selftransprob = 0.99; // vector<double> init = vector<double>(nChord,1.0/nChord); vector<double> init = vector<double>(nChord,0); init[nChord-1] = 1; double *delta; delta = (double *)malloc(sizeof(double)*nFrame*nChord); vector<vector<double> > trans; for (int iChord = 0; iChord < nChord; iChord++) { vector<double> temp = vector<double>(nChord,(1-selftransprob)/(nChord-1)); temp[iChord] = selftransprob; trans.push_back(temp); } vector<double> scale; vector<int> chordpath = ViterbiPath(init, trans, chordogram, delta, &scale); Feature chord_feature; // chord estimate chord_feature.hasTimestamp = true; chord_feature.timestamp = timestamps[0]; chord_feature.label = m_chordnames[chordpath[0]]; fsOut[m_outputChords].push_back(chord_feature); chordchange[0] = 0; for (int iFrame = 1; iFrame < (int)chordpath.size(); ++iFrame) { // cerr << chordpath[iFrame] << endl; if (chordpath[iFrame] != oldchord ) { // chord Feature chord_feature; // chord estimate chord_feature.hasTimestamp = true; chord_feature.timestamp = timestamps[iFrame]; chord_feature.label = m_chordnames[chordpath[iFrame]]; fsOut[m_outputChords].push_back(chord_feature); oldchord = chordpath[iFrame]; // chord notes for (int iNote = 0; iNote < (int)oldnotes.size(); ++iNote) { // finish duration of old chord oldnotes[iNote].duration = oldnotes[iNote].duration + timestamps[iFrame]; fsOut[m_outputChordnotes].push_back(oldnotes[iNote]); } oldnotes.clear(); for (int iNote = 0; iNote < (int)m_chordnotes[chordpath[iFrame]].size(); ++iNote) { // prepare notes of current chord Feature chordnote_feature; chordnote_feature.hasTimestamp = true; chordnote_feature.timestamp = timestamps[iFrame]; chordnote_feature.values.push_back(m_chordnotes[chordpath[iFrame]][iNote]); chordnote_feature.hasDuration = true; chordnote_feature.duration = -timestamps[iFrame]; // this will be corrected at the next chord oldnotes.push_back(chordnote_feature); } } /* calculating simple chord change prob */ for (int iChord = 0; iChord < nChord; iChord++) { chordchange[iFrame-1] += delta[(iFrame-1)*nChord + iChord] * log(delta[(iFrame-1)*nChord + iChord]/delta[iFrame*nChord + iChord]); } } float logscale = 0; for (int iFrame = 0; iFrame < nFrame; ++iFrame) { logscale -= log(scale[iFrame]); Feature loglikelihood; loglikelihood.hasTimestamp = true; loglikelihood.timestamp = timestamps[iFrame]; loglikelihood.values.push_back(-log(scale[iFrame])); // cerr << chordchange[iFrame] << endl; fsOut[m_outputLoglikelihood].push_back(loglikelihood); } logscale /= nFrame; // cerr << "loglik" << logscale << endl; // cerr << chordpath[0] << endl; } else { /* Simple chord estimation I just take the local chord estimates ("currentChordSalience") and average them over time, then take the maximum. Very simple, don't do this at home... */ cerr << "[Chordino Plugin] Simple Chord Estimation ... "; count = 0; int halfwindowlength = m_inputSampleRate / m_stepSize; vector<int> chordSequence; for (vector<Vamp::RealTime>::iterator it = timestamps.begin(); it != timestamps.end(); ++it) { // initialise the score chordogram vector<int> temp = vector<int>(nChord,0); scoreChordogram.push_back(temp); } for (vector<Vamp::RealTime>::iterator it = timestamps.begin(); it < timestamps.end()-2*halfwindowlength-1; ++it) { int startIndex = count + 1; int endIndex = count + 2 * halfwindowlength; float chordThreshold = 2.5/nChord;//*(2*halfwindowlength+1); vector<int> chordCandidates; for (int iChord = 0; iChord+1 < nChord; iChord++) { // float currsum = 0; // for (int iFrame = startIndex; iFrame < endIndex; ++iFrame) { // currsum += chordogram[iFrame][iChord]; // } // if (currsum > chordThreshold) chordCandidates.push_back(iChord); for (int iFrame = startIndex; iFrame < endIndex; ++iFrame) { if (chordogram[iFrame][iChord] > chordThreshold) { chordCandidates.push_back(iChord); break; } } } chordCandidates.push_back(nChord-1); // cerr << chordCandidates.size() << endl; float maxval = 0; // will be the value of the most salient *chord change* in this frame float maxindex = 0; //... and the index thereof int bestchordL = nChord-1; // index of the best "left" chord int bestchordR = nChord-1; // index of the best "right" chord for (int iWF = 1; iWF < 2*halfwindowlength; ++iWF) { // now find the max values on both sides of iWF // left side: float maxL = 0; int maxindL = nChord-1; for (int kChord = 0; kChord < (int)chordCandidates.size(); kChord++) { int iChord = chordCandidates[kChord]; float currsum = 0; for (int iFrame = 0; iFrame < iWF-1; ++iFrame) { currsum += chordogram[count+iFrame][iChord]; } if (iChord == nChord-1) currsum *= 0.8; if (currsum > maxL) { maxL = currsum; maxindL = iChord; } } // right side: float maxR = 0; int maxindR = nChord-1; for (int kChord = 0; kChord < (int)chordCandidates.size(); kChord++) { int iChord = chordCandidates[kChord]; float currsum = 0; for (int iFrame = iWF-1; iFrame < 2*halfwindowlength; ++iFrame) { currsum += chordogram[count+iFrame][iChord]; } if (iChord == nChord-1) currsum *= 0.8; if (currsum > maxR) { maxR = currsum; maxindR = iChord; } } if (maxL+maxR > maxval) { maxval = maxL+maxR; maxindex = iWF; bestchordL = maxindL; bestchordR = maxindR; } } // cerr << "maxindex: " << maxindex << ", bestchordR is " << bestchordR << ", of frame " << count << endl; // add a score to every chord-frame-point that was part of a maximum for (int iFrame = 0; iFrame < maxindex-1; ++iFrame) { scoreChordogram[iFrame+count][bestchordL]++; } for (int iFrame = maxindex-1; iFrame < 2*halfwindowlength; ++iFrame) { scoreChordogram[iFrame+count][bestchordR]++; } if (bestchordL != bestchordR) { chordchange[maxindex+count] += (halfwindowlength - abs(maxindex-halfwindowlength)) * 2.0 / halfwindowlength; } count++; } // cerr << "******* agent finished *******" << endl; count = 0; for (vector<Vamp::RealTime>::iterator it = timestamps.begin(); it != timestamps.end(); ++it) { float maxval = 0; // will be the value of the most salient chord in this frame float maxindex = 0; //... and the index thereof for (int iChord = 0; iChord < nChord; iChord++) { if (scoreChordogram[count][iChord] > maxval) { maxval = scoreChordogram[count][iChord]; maxindex = iChord; // cerr << iChord << endl; } } chordSequence.push_back(maxindex); count++; } // mode filter on chordSequence count = 0; string oldChord = ""; for (vector<Vamp::RealTime>::iterator it = timestamps.begin(); it != timestamps.end(); ++it) { Feature chord_feature; // chord estimate chord_feature.hasTimestamp = true; chord_feature.timestamp = *it; // Feature currentChord; // chord estimate // currentChord.hasTimestamp = true; // currentChord.timestamp = currentChromas.timestamp; vector<int> chordCount = vector<int>(nChord,0); int maxChordCount = 0; int maxChordIndex = nChord-1; string maxChord; int startIndex = max(count - halfwindowlength/2,0); int endIndex = min(int(chordogram.size()), count + halfwindowlength/2); for (int i = startIndex; i < endIndex; i++) { chordCount[chordSequence[i]]++; if (chordCount[chordSequence[i]] > maxChordCount) { // cerr << "start index " << startIndex << endl; maxChordCount++; maxChordIndex = chordSequence[i]; maxChord = m_chordnames[maxChordIndex]; } } // chordSequence[count] = maxChordIndex; // cerr << maxChordIndex << endl; // cerr << chordchange[count] << endl; if (oldChord != maxChord) { oldChord = maxChord; chord_feature.label = m_chordnames[maxChordIndex]; fsOut[m_outputChords].push_back(chord_feature); for (int iNote = 0; iNote < (int)oldnotes.size(); ++iNote) { // finish duration of old chord oldnotes[iNote].duration = oldnotes[iNote].duration + chord_feature.timestamp; fsOut[m_outputChordnotes].push_back(oldnotes[iNote]); } oldnotes.clear(); for (int iNote = 0; iNote < (int)m_chordnotes[maxChordIndex].size(); ++iNote) { // prepare notes of current chord Feature chordnote_feature; chordnote_feature.hasTimestamp = true; chordnote_feature.timestamp = chord_feature.timestamp; chordnote_feature.values.push_back(m_chordnotes[maxChordIndex][iNote]); chordnote_feature.hasDuration = true; chordnote_feature.duration = -chord_feature.timestamp; // this will be corrected at the next chord oldnotes.push_back(chordnote_feature); } } count++; } } Feature chord_feature; // last chord estimate chord_feature.hasTimestamp = true; chord_feature.timestamp = timestamps[timestamps.size()-1]; chord_feature.label = "N"; fsOut[m_outputChords].push_back(chord_feature); for (int iNote = 0; iNote < (int)oldnotes.size(); ++iNote) { // finish duration of old chord oldnotes[iNote].duration = oldnotes[iNote].duration + timestamps[timestamps.size()-1]; fsOut[m_outputChordnotes].push_back(oldnotes[iNote]); } cerr << "done." << endl; for (int iFrame = 0; iFrame < nFrame; iFrame++) { Feature chordchange_feature; chordchange_feature.hasTimestamp = true; chordchange_feature.timestamp = timestamps[iFrame]; chordchange_feature.values.push_back(chordchange[iFrame]); // cerr << chordchange[iFrame] << endl; fsOut[m_outputHarmonicChange].push_back(chordchange_feature); } // for (int iFrame = 0; iFrame < nFrame; iFrame++) cerr << fsOut[m_outputHarmonicChange][iFrame].values[0] << endl; return fsOut; }