Mercurial > hg > nimfks
view src/matlab/nmf_beta.m @ 0:c52bc3e8d3ad tip
user: boblsturm
branch 'default'
added README.md
added assets/.DS_Store
added assets/playButton.jpg
added assets/stopButton.png
added assets/swapButton.jpg
added data/.DS_Store
added data/fiveoctaves.mp3
added data/glock2.wav
added data/sinScale.mp3
added data/speech_female.mp3
added data/sweep.wav
added nimfks.m.lnk
added src/.DS_Store
added src/matlab/.DS_Store
added src/matlab/AnalysisCache.m
added src/matlab/CSS.m
added src/matlab/DataHash.m
added src/matlab/ExistsInCache.m
added src/matlab/KLDivCost.m
added src/matlab/LoadFromCache.m
added src/matlab/SA_B_NMF.m
added src/matlab/SaveInCache.m
added src/matlab/Sound.m
added src/matlab/SynthesisCache.m
added src/matlab/chromagram_E.m
added src/matlab/chromagram_IF.m
added src/matlab/chromagram_P.m
added src/matlab/chromsynth.m
added src/matlab/computeSTFTFeat.m
added src/matlab/controller.m
added src/matlab/decibelSliderReleaseCallback.m
added src/matlab/drawClickCallBack.m
added src/matlab/fft2chromamx.m
added src/matlab/hz2octs.m
added src/matlab/ifgram.m
added src/matlab/ifptrack.m
added src/matlab/istft.m
added src/matlab/nimfks.fig
added src/matlab/nimfks.m
added src/matlab/nmfFn.m
added src/matlab/nmf_beta.m
added src/matlab/nmf_divergence.m
added src/matlab/nmf_euclidean.m
added src/matlab/prune_corpus.m
added src/matlab/rot_kernel.m
added src/matlab/templateAdditionResynth.m
added src/matlab/templateDelCb.m
added src/matlab/templateScrollCb.m
author | boblsturm |
---|---|
date | Sun, 18 Jun 2017 06:26:13 -0400 |
parents | |
children |
line wrap: on
line source
function [ Y, cost ] = nmf_beta( V, W, varargin ) if nargin > 2 nmf_params = varargin{1}; iterations = nmf_params.Iterations; lambda = nmf_params.Lambda; beta = nmf_params.Beta % 1: KL Divergence; 2: Euclidean end cost=0; K=size(W, 2); M=size(V, 2); H=random('unif',0, 1, K, M); V = V+1E-6; W = W+1E-6; for l=1:L-1 recon = W*H; num = H.*(W'*(((recon).^(beta-2)).*V)); den = W'*((recon).^(beta-1)); H = num./den; end fprintf('Iterations: %i/%i\n', l, L); fprintf('Convergence Criteria: %i\n', convergence*100); fprintf('Repitition: %i\n', r); fprintf('Polyphony: %i\n', p); fprintf('Continuity: %i\n', c); Y=H; Y = Y./max(max(Y)); %Normalize activations end