view src/matlab/nmf_beta.m @ 0:c52bc3e8d3ad tip

user: boblsturm branch 'default' added README.md added assets/.DS_Store added assets/playButton.jpg added assets/stopButton.png added assets/swapButton.jpg added data/.DS_Store added data/fiveoctaves.mp3 added data/glock2.wav added data/sinScale.mp3 added data/speech_female.mp3 added data/sweep.wav added nimfks.m.lnk added src/.DS_Store added src/matlab/.DS_Store added src/matlab/AnalysisCache.m added src/matlab/CSS.m added src/matlab/DataHash.m added src/matlab/ExistsInCache.m added src/matlab/KLDivCost.m added src/matlab/LoadFromCache.m added src/matlab/SA_B_NMF.m added src/matlab/SaveInCache.m added src/matlab/Sound.m added src/matlab/SynthesisCache.m added src/matlab/chromagram_E.m added src/matlab/chromagram_IF.m added src/matlab/chromagram_P.m added src/matlab/chromsynth.m added src/matlab/computeSTFTFeat.m added src/matlab/controller.m added src/matlab/decibelSliderReleaseCallback.m added src/matlab/drawClickCallBack.m added src/matlab/fft2chromamx.m added src/matlab/hz2octs.m added src/matlab/ifgram.m added src/matlab/ifptrack.m added src/matlab/istft.m added src/matlab/nimfks.fig added src/matlab/nimfks.m added src/matlab/nmfFn.m added src/matlab/nmf_beta.m added src/matlab/nmf_divergence.m added src/matlab/nmf_euclidean.m added src/matlab/prune_corpus.m added src/matlab/rot_kernel.m added src/matlab/templateAdditionResynth.m added src/matlab/templateDelCb.m added src/matlab/templateScrollCb.m
author boblsturm
date Sun, 18 Jun 2017 06:26:13 -0400
parents
children
line wrap: on
line source
function [ Y, cost ] = nmf_beta( V, W, varargin )

if nargin > 2
    nmf_params = varargin{1};
    iterations = nmf_params.Iterations;
    lambda = nmf_params.Lambda;
    beta = nmf_params.Beta % 1: KL Divergence; 2: Euclidean
end

cost=0;
K=size(W, 2);
M=size(V, 2);

H=random('unif',0, 1, K, M);

V = V+1E-6;
W = W+1E-6;

for l=1:L-1    
    recon = W*H;
    num = H.*(W'*(((recon).^(beta-2)).*V));
    den = W'*((recon).^(beta-1));
    H = num./den;    
end

fprintf('Iterations: %i/%i\n', l, L);
fprintf('Convergence Criteria: %i\n', convergence*100);
fprintf('Repitition: %i\n', r);
fprintf('Polyphony: %i\n', p);
fprintf('Continuity: %i\n', c);

Y=H;
Y = Y./max(max(Y)); %Normalize activations

end