annotate src/matlab/nmf_beta.m @ 0:c52bc3e8d3ad
tip
user: boblsturm
branch 'default'
added README.md
added assets/.DS_Store
added assets/playButton.jpg
added assets/stopButton.png
added assets/swapButton.jpg
added data/.DS_Store
added data/fiveoctaves.mp3
added data/glock2.wav
added data/sinScale.mp3
added data/speech_female.mp3
added data/sweep.wav
added nimfks.m.lnk
added src/.DS_Store
added src/matlab/.DS_Store
added src/matlab/AnalysisCache.m
added src/matlab/CSS.m
added src/matlab/DataHash.m
added src/matlab/ExistsInCache.m
added src/matlab/KLDivCost.m
added src/matlab/LoadFromCache.m
added src/matlab/SA_B_NMF.m
added src/matlab/SaveInCache.m
added src/matlab/Sound.m
added src/matlab/SynthesisCache.m
added src/matlab/chromagram_E.m
added src/matlab/chromagram_IF.m
added src/matlab/chromagram_P.m
added src/matlab/chromsynth.m
added src/matlab/computeSTFTFeat.m
added src/matlab/controller.m
added src/matlab/decibelSliderReleaseCallback.m
added src/matlab/drawClickCallBack.m
added src/matlab/fft2chromamx.m
added src/matlab/hz2octs.m
added src/matlab/ifgram.m
added src/matlab/ifptrack.m
added src/matlab/istft.m
added src/matlab/nimfks.fig
added src/matlab/nimfks.m
added src/matlab/nmfFn.m
added src/matlab/nmf_beta.m
added src/matlab/nmf_divergence.m
added src/matlab/nmf_euclidean.m
added src/matlab/prune_corpus.m
added src/matlab/rot_kernel.m
added src/matlab/templateAdditionResynth.m
added src/matlab/templateDelCb.m
added src/matlab/templateScrollCb.m
author |
boblsturm |
date |
Sun, 18 Jun 2017 06:26:13 -0400 |
parents |
|
children |
|
rev |
line source |
boblsturm@0
|
1 function [ Y, cost ] = nmf_beta( V, W, varargin )
|
boblsturm@0
|
2
|
boblsturm@0
|
3 if nargin > 2
|
boblsturm@0
|
4 nmf_params = varargin{1};
|
boblsturm@0
|
5 iterations = nmf_params.Iterations;
|
boblsturm@0
|
6 lambda = nmf_params.Lambda;
|
boblsturm@0
|
7 beta = nmf_params.Beta % 1: KL Divergence; 2: Euclidean
|
boblsturm@0
|
8 end
|
boblsturm@0
|
9
|
boblsturm@0
|
10 cost=0;
|
boblsturm@0
|
11 K=size(W, 2);
|
boblsturm@0
|
12 M=size(V, 2);
|
boblsturm@0
|
13
|
boblsturm@0
|
14 H=random('unif',0, 1, K, M);
|
boblsturm@0
|
15
|
boblsturm@0
|
16 V = V+1E-6;
|
boblsturm@0
|
17 W = W+1E-6;
|
boblsturm@0
|
18
|
boblsturm@0
|
19 for l=1:L-1
|
boblsturm@0
|
20 recon = W*H;
|
boblsturm@0
|
21 num = H.*(W'*(((recon).^(beta-2)).*V));
|
boblsturm@0
|
22 den = W'*((recon).^(beta-1));
|
boblsturm@0
|
23 H = num./den;
|
boblsturm@0
|
24 end
|
boblsturm@0
|
25
|
boblsturm@0
|
26 fprintf('Iterations: %i/%i\n', l, L);
|
boblsturm@0
|
27 fprintf('Convergence Criteria: %i\n', convergence*100);
|
boblsturm@0
|
28 fprintf('Repitition: %i\n', r);
|
boblsturm@0
|
29 fprintf('Polyphony: %i\n', p);
|
boblsturm@0
|
30 fprintf('Continuity: %i\n', c);
|
boblsturm@0
|
31
|
boblsturm@0
|
32 Y=H;
|
boblsturm@0
|
33 Y = Y./max(max(Y)); %Normalize activations
|
boblsturm@0
|
34
|
boblsturm@0
|
35 end
|