d@0: #!/usr/bin/python d@0: d@0: import sys d@0: import os d@0: import csv d@0: import matplotlib.pyplot as plt d@0: import numpy as np d@0: import scipy as sp d@0: import scipy.stats d@0: d@0: # CONFIGURATION d@0: d@0: # Which type(s) of plot do you want? d@0: enable_boxplot = True # show box plot d@0: enable_confidence = False # show confidence interval d@0: confidence = 0.90 # confidence value (for confidence interval plot) d@0: enable_individual = False # show all individual ratings d@0: show_individual = [] # show specific individuals d@0: show_legend = False # show names of individuals d@0: #TODO: Merge, implement this functionality d@0: #TODO: Control by CLI arguments (plot types, save and/or show, ...) d@0: d@0: # Enter folder where rating CSV files are (generated with score_parser.py or same format). d@0: rating_folder = '../saves/ratings/' # folder with rating csv files d@0: d@0: # Font settings d@0: font = {'weight' : 'bold', d@0: 'size' : 10} d@0: plt.rc('font', **font) d@0: d@0: d@0: # CODE d@0: d@0: # get every csv file in folder d@0: for file in os.listdir(rating_folder): # You have to put this in folder where rating csv files are. d@0: if file.endswith(".csv"): d@0: page_name = file[:-4] # file name (without extension) is page ID d@0: d@0: # get header d@0: with open(rating_folder+file, 'rb') as readfile: # read this csv file d@0: filereader = csv.reader(readfile, delimiter=',') d@0: headerrow = filereader.next() # use headerrow as X-axis d@0: headerrow = headerrow[1:] d@0: d@0: # read ratings into matrix d@0: # ratings = np.loadtxt(open(rating_folder+file,"rb"), d@0: # delimiter=",", d@0: # skiprows=1, d@0: # usecols=range(1,len(headerrow)+1) d@0: # ) d@0: ratings = np.genfromtxt(readfile, d@0: delimiter=",", d@0: #skip_header = 1, d@0: converters = {3: lambda s: float(s or 'Nan')}, d@0: usecols=range(1,len(headerrow)+1) d@0: ) d@0: d@0: # assert at least 2 subjects (move on to next file if violated) d@0: if ratings.shape[0]<2: d@0: print "WARNING: Just one subject for " + page_name + ". Moving on to next file." d@0: break d@0: d@0: # BOXPLOT d@0: if enable_boxplot: d@0: plt.boxplot(ratings) d@0: d@0: # CONFIDENCE INTERVAL d@0: if enable_confidence: d@0: iterator = 0 d@0: for column in ratings.T: # iterate over transposed matrix d@0: # remove all 'Nan's from column d@0: column = column[~np.isnan(column)] d@0: d@0: # get number of non-Nan ratings (= #subjects) d@0: n = column.size d@0: d@0: # get mean d@0: mean_rating = np.mean(column) d@0: d@0: # get errors d@0: err = scipy.stats.sem(column)* sp.stats.t._ppf((1+confidence)/2., n-1) d@0: d@0: # draw plot d@0: plt.errorbar(iterator+1, d@0: mean_rating, d@0: yerr=err, d@0: marker="x", d@0: color ="k", d@0: markersize=12, d@0: linestyle='None') d@0: d@0: iterator += 1 # increase counter d@0: d@0: d@0: # INDIVIDUAL PLOT d@0: if enable_individual or show_individual: d@0: # marker list and color map to cycle through d@0: markerlist = ["x", ".", "o", "*", "+", "v", ">", "<", "8", "s", "p"] d@0: colormap = ['b', 'r', 'g', 'c', 'm', 'y', 'k'] d@0: increment = 0 d@0: linehandles = [] d@0: legendnames = [] d@0: with open(rating_folder+file, 'rb') as readfile: # read this csv file d@0: filereader = csv.reader(readfile, delimiter=',') d@0: headerrow = filereader.next() # use headerrow as X-axis d@0: headerrow = headerrow[1:] d@0: for row in filereader: d@0: subject_id = row[0][:-4] # read from beginning of line d@0: # assume plotting all individuals if no individual(s) specified d@0: if not show_individual or subject_id in show_individual: d@0: plothandle, = plt.plot(range(1,len(row)), # x-values d@0: ratings[increment,:],#row[1:], # y-values: csv values except subject name d@0: color=colormap[increment%len(colormap)], d@0: marker=markerlist[increment%len(markerlist)], d@0: markersize=10, d@0: linestyle='None', d@0: label=subject_id d@0: ) d@0: linehandles.append(plothandle) d@0: legendnames.append(subject_id) d@0: if show_legend: d@0: plt.legend(linehandles, legendnames, d@0: loc='upper right', d@0: bbox_to_anchor=(1.1, 1), d@0: borderaxespad=0., d@0: numpoints=1 # remove extra marker d@0: ) d@0: increment += 1 # increase counter d@0: d@0: # TITLE, AXIS LABELS AND LIMITS d@0: plt.title(page_name) d@0: plt.xlabel('Fragment') d@0: plt.xlim(0, len(headerrow)+1) # only show relevant region, leave space left & right) d@0: plt.xticks(range(1, len(headerrow)+1), headerrow) # show fragment names d@0: plt.ylabel('Rating') d@0: plt.ylim(0,1) d@0: d@0: d@0: d@0: # SHOW PLOT d@0: #plt.show() d@0: #exit() d@0: d@0: # SAVE PLOT d@0: # automatically d@0: plot_type = ("-box" if enable_boxplot else "") + \ d@0: ("-conf" if enable_confidence else "") + \ d@0: ("-ind" if enable_individual else "") d@0: plt.savefig(rating_folder+page_name+plot_type+".png") d@0: plt.close()