Mercurial > hg > mirex-meta-analysis
view do_correlation_fig3_only.m @ 2:624231da830b
Removed name from comments. Updated readme extensively. Renamed 2 files without significant changes. Added EP data as a bonus.
author | Jordan Smith <jordan.smith@eecs.qmul.ac.uk> |
---|---|
date | Fri, 20 Sep 2013 17:05:34 +0100 |
parents | |
children |
line wrap: on
line source
function [asig pval a a_] = do_correlation3_fig3_only(megacube, songs, metrics, algos, algo_groups, merge_algos, merge_songs, merge_dsets, metric_labels, bonferroni, metrics2, metric_labels2) % Script to make and analyze correlation plot. % Example usage: % To run your first experiment (Fig 1a) request: % do_correlation(megacube, lab_measures, sind_manual1, [1:9], -1, 0, 1, -1, s_manual1) % % Note a few hard-coded decisions, such as: % - use of 0.05 significance level with Bonferroni correction % - in the image, decision that tau > 0.8 is strong, tau > 0.4 is weak, and tau < 0.4 is nothing. maxtau = 0.8; mintau = 0.33; tmpcube1 = megacube(songs,[metrics metrics2],algos); tmpcube2 = megacube(songs,metrics2,algos); if merge_algos>0, % If we merge algorithms, take the median score across algorithms. tmpcube1 = median(tmpcube1,3); tmpcube2 = median(tmpcube2,3); elseif merge_songs>0, % If we merge songs, take the median score across songs. tmpcube1 = median(tmpcube1,1); tmpcube2 = median(tmpcube2,1); tmpcube1 = transpose(reshape(tmpcube1,size(tmpcube1,2),size(tmpcube1,3))); tmpcube2 = transpose(reshape(tmpcube2,size(tmpcube2,2),size(tmpcube2,3))); end % Accept a matrix and its pvalues, determine which values are significant. % Matrix is A, pvalues are PVAL tic [a pval] = corr(tmpcube2, tmpcube1,'type','Kendall'); toc % Apply bonferroni correction: m = sum(sum(tril(ones(size(a)), length(metrics)-1))) asig = pval<0.05; if bonferroni==1, fprintf('Bonferroni applied.\n') asig = (pval*m)<0.05; % This is the matrix of values that are significant. end % Make a pretty picture: a_ = (abs(a)>=maxtau) + (abs(a)>=mintau); a_ = tril(a_,length(metrics)-1); % bg = 2*triu(ones(size(a_))); % A contains the correlation values themselves. % ASIG is a binary matrix that states whether the correlation is statistically significant. % A_ is a matrix of -2, -1, 0, 1 and 2s that says whether a correlation is qualitatively strong (2), qualitatively weak (1), or nada (0). % The values we display will always be straight from A. The image we display, though, to emphasize the strong correlations, % should be the element-wise product of A, ASIG, and A_. % So we will only display colours for values that are statistically significant. % In addition, we will only put in inverted text those that are qualitatively large (>0.8). % However, this leaves the possibility of large correlations (>0.8) that are insignificant, which show up as white text on white background. % Therefore, let us change tacks: % % If tau>0.33 (a_>0), include text. % If tau is significant (asig=1), include background. % If tau>0.8 (a_=2), put in bold. % If tau>0.8 AND significant, invert the color of the text. img = a_.*a.*asig; img = img(:,1:end-1); figure,imagesc(img, [-1 1]) for i=1:size(a_,1), for j=1:size(a_,2), if a_(i,j)>0, % tau is >0.33 so we definitely write the value. need to determine fontface and colour. % if tau>.8, put in bold if abs(a_(i,j))>1, fontw = 'bold'; else fontw = 'normal'; end if abs(a_(i,j))>1 & asig(i,j)==1, textcolor = [1 1 1]; else textcolor = [0 0 0]; end % h = text(j-.35,i,num2str(a(i,j),2),'Color',textcolor); h = text(j,i,sprintf('%.2f',a(i,j)),'Color',textcolor,'FontWeight',fontw,'FontSize',8,'HorizontalAlignment','center'); set(h,'HorizontalAlignment','center','Rotation',90) end end end cmap_el = transpose([linspace(.3,1,50)]); cmap = repmat(cmap_el,1,3); cmap = [cmap; flipud(cmap)]; % Alternatively: cmap = [ones(size(cmap_el)) cmap_el cmap_el; flipud([cmap_el cmap_el ones(size(cmap_el))])]; colormap(cmap); set(gca,'YTickLabel',metric_labels2,'YTick',1:size(a,1),'FontAngle','italic','FontSize',10) % set(gca,'XTickLabel',[metric_labels metric_labels2],'XTick',1:size(a,2),'FontAngle','italic','FontSize',10) set(gca,'XTickLabel',[],'XTick',1:size(a,2)-1); t = text((1:size(a,2)-1)-.5,size(a,1)*ones(1,size(a,2)-1)+.7,[metric_labels metric_labels2(1:end-1)]); set(t,'HorizontalAlignment','right','VerticalAlignment','top', 'Rotation',90,'FontAngle','italic'); % set(gcf,'Position',[1000,1000,700,300]) % set(gca,'XTickLabel',metric_labels(2:2:end),'YTick',(1:length(a)/2)) % axis([0.5, length(a)-.5, 1.5, length(a)+.5])