Mercurial > hg > mirex-meta-analysis
view do_correlation.m @ 2:624231da830b
Removed name from comments. Updated readme extensively. Renamed 2 files without significant changes. Added EP data as a bonus.
author | Jordan Smith <jordan.smith@eecs.qmul.ac.uk> |
---|---|
date | Fri, 20 Sep 2013 17:05:34 +0100 |
parents | |
children |
line wrap: on
line source
function [asig pval a a_] = do_correlation(megacube, songs, metrics, algos, algo_groups, merge_algos, merge_songs, merge_dsets, metric_labels, bonferroni) % function [asig pval a a_] = do_correlation(megacube, songs, metrics, algos, algo_groups, merge_algos, merge_songs, merge_dsets, metric_labels, bonferroni) % % Script to make and analyze correlation plot. % Example usage: % To run your first experiment (Fig 1a) request: % do_correlation(megacube, lab_measures, sind_manual1, [1:9], -1, 0, 1, -1, s_manual1) % % MEGACUBE is the giant (N songs) x (M metrics) x (L algorithms) matrix of evaluation results. % SONGS, METRICS and ALGOS are the indices into these three dimensions desired. % ALGO_GROUPS indicates groups of algorithms that should be averaged together rather than counted separately. % (this has not yet been implemented) % Set MERGE_ALGOS > 0 in order to compute the median score across algorithms. % Set MERGE_SONGS > 0 in order to compute the median score across songs. % MERGE_DSETS is also not yet implemented. % METRIC_LABELS is a matrix of strings, one for each of the METRICS, for use in plotting. % Set BONFERRONI > 0 in order to apply a bonferroni correction of BONFERRONI. (Default value: 0.05.) % Note a few hard-coded decisions, such as: % - significance level hard coded as 0.05. % - in the image, decision that tau > 0.8 is strong, tau > 0.33 is weak, and tau < 0.33 is nothing. % Defaults and hard coding values: if nargin<10, bonferroni = 0.05; end significant_p = 0.05; maxtau = 0.8; mintau = 0.33; tmpcube = megacube(songs,metrics,algos); % if exist('algo_groups'), % for i=1:length(algo_groups), % merge the groups somehow... % end % end if merge_algos>0, % If we merge algorithms, take the median score across algorithms. tmpcube = median(tmpcube,3); elseif merge_songs>0, % If we merge songs, take the median score across songs. tmpcube = median(tmpcube,1); % Then, resize the matrix to be 2-d: tmpcube = transpose(reshape(tmpcube,size(tmpcube,2),size(tmpcube,3))); end % Compute Kendall tau correlation: [a pval] = corr(tmpcube,'type','Kendall'); % Apply bonferroni correction: m = length(a)*(length(a)-1)/2; asig = pval<significant_p; if bonferroni>0, fprintf('Bonferroni applied.\n') asig = (pval*m)<bonferroni; % This is the matrix of values that are significant. end a_ = (abs(a)>=maxtau) + (abs(a)>=mintau); a_ = tril(a_,-1); % A contains the correlation values themselves. % ASIG is a binary matrix that states whether the correlation is statistically significant. % A_ is a matrix of -2, -1, 0, 1 and 2s that says whether a correlation is qualitatively strong (2), qualitatively weak (1), or nada (0). % Sometimes values will be statistically significant, but qualitatively insignificant. We do not want to bother looking at these, so % let us make our pretty picture carefully. % The values we display will always be straight from A. The colour we display, to emphasize the strong correlations, % should be the element-wise product of A, ASIG, and A_. % Also: % Iff tau>0.33 (a_>0), include text. % Iff tau is significant (asig=1), include background. % Iff tau>0.8 (a_=2), put in bold. % Iff tau>0.8 AND tau is significant, invert the color of the text (because the colour will be darker). img = a_.*a.*asig; img = img(2:end,1:end-1); % ignore the diagonal clf imagesc(img, [-1 1]) for i=1:length(a_), for j=1:length(a_), if a_(i,j)>0, % tau is >0.33 so we definitely write the value. need to determine fontface and colour. % if tau>.8, put in bold if abs(a_(i,j))>1, fontw = 'bold'; else fontw = 'normal'; end if abs(a_(i,j))>1 & asig(i,j)==1, textcolor = [1 1 1]; else textcolor = [0 0 0]; end % h = text(j-.35,i-1,num2str(a(i,j),2),'Color',textcolor); h = text(j,i-1,sprintf('%.2f',a(i,j)),'Color',textcolor,'FontWeight',fontw,'FontSize',12,'HorizontalAlignment','center'); set(h,'HorizontalAlignment','center') end end end cmap_el = transpose([linspace(.3,1,50)]); cmap = repmat(cmap_el,1,3); cmap = [cmap; flipud(cmap)]; % Alternatively: cmap = [ones(size(cmap_el)) cmap_el cmap_el; flipud([cmap_el cmap_el ones(size(cmap_el))])]; colormap(cmap); set(gca,'YTickLabel',metric_labels(2:end),'YTick',(1:length(a)-1),'FontAngle','italic','FontSize',12) set(gca,'XTickLabel',metric_labels(1:end-1),'XTick',(1:length(a)-1),'FontAngle','italic','FontSize',12) % set(gcf,'Position',[1000,1000,700,300]) % set(gca,'XTickLabel',metric_labels(2:2:end),'YTick',(1:length(a)/2)) % axis([0.5, length(a)-.5, 1.5, length(a)+.5])