Mercurial > hg > mirex-meta-analysis
comparison do_correlation_analyses.m @ 2:624231da830b
Removed name from comments. Updated readme extensively. Renamed 2 files without significant changes. Added EP data as a bonus.
author | Jordan Smith <jordan.smith@eecs.qmul.ac.uk> |
---|---|
date | Fri, 20 Sep 2013 17:05:34 +0100 |
parents | 818a4b5f3384 |
children | 92b5a46bc67b |
comparison
equal
deleted
inserted
replaced
1:818a4b5f3384 | 2:624231da830b |
---|---|
10 % First, generate figure 1a. For that, we call the function DO_CORRELATION. | 10 % First, generate figure 1a. For that, we call the function DO_CORRELATION. |
11 % Type HELP DO_CORRELATION to understand what all the arguments mean... The short of it | 11 % Type HELP DO_CORRELATION to understand what all the arguments mean... The short of it |
12 % is that we select the songs, metrics and algorithms to compare, and then choose | 12 % is that we select the songs, metrics and algorithms to compare, and then choose |
13 % whether to take the median across all songs or across all algorithms. | 13 % whether to take the median across all songs or across all algorithms. |
14 | 14 |
15 [asig pval a a_] = do_correlation3(megadatacube, lab_measures, indexing_info(1).manual_set, [1:9],... | 15 [asig pval a a_] = do_correlation(megadatacube, lab_measures, indexing_info(1).manual_set, [1:9],... |
16 0, 0, 1, 0, indexing_info(1).labels, 0.05); | 16 0, 0, 1, 0, indexing_info(1).labels, 0.05); |
17 saveas(gcf,'./plots/fig1a.jpg') | 17 saveas(gcf,'./plots/fig1a.jpg') |
18 | 18 |
19 [asig pval a a_] = do_correlation3(megadatacube, lab_measures, indexing_info(1).manual_set, [1:9],... | 19 [asig pval a a_] = do_correlation(megadatacube, lab_measures, indexing_info(1).manual_set, [1:9],... |
20 0, 1, 0, 0, indexing_info(1).labels, 0.05); | 20 0, 1, 0, 0, indexing_info(1).labels, 0.05); |
21 saveas(gcf,'./plots/fig1b.jpg') | 21 saveas(gcf,'./plots/fig1b.jpg') |
22 | 22 |
23 [asig pval a a_] = do_correlation3(megadatacube, seg_measures, indexing_info(2).manual_set, [1:9],... | 23 [asig pval a a_] = do_correlation(megadatacube, seg_measures, indexing_info(2).manual_set, [1:9],... |
24 0, 0, 1, 0, indexing_info(2).labels, 0.05); | 24 0, 0, 1, 0, indexing_info(2).labels, 0.05); |
25 saveas(gcf,'./plots/fig2a.jpg') | 25 saveas(gcf,'./plots/fig2a.jpg') |
26 | 26 |
27 [asig pval a a_] = do_correlation3(megadatacube, seg_measures, indexing_info(2).manual_set, [1:9],... | 27 [asig pval a a_] = do_correlation(megadatacube, seg_measures, indexing_info(2).manual_set, [1:9],... |
28 0, 1, 0, 0, indexing_info(2).labels, 0.05); | 28 0, 1, 0, 0, indexing_info(2).labels, 0.05); |
29 saveas(gcf,'./plots/fig2b.jpg') | 29 saveas(gcf,'./plots/fig2b.jpg') |
30 | 30 |
31 [asig pval a a_] = do_correlation3_fig3_only(megadatacube, lab_measures, [indexing_info(1).manual_set indexing_info(2).manual_set], [1:9], 0, 1, 0, 0, indexing_info(2).all_labels([indexing_info(1).manual_set indexing_info(2).manual_set]), 1, indexing_info(3).manual_set, indexing_info(3).labels); | 31 [asig pval a a_] = do_correlation_fig3_only(megadatacube, lab_measures, [indexing_info(1).manual_set indexing_info(2).manual_set], [1:9], 0, 1, 0, 0, indexing_info(2).all_labels([indexing_info(1).manual_set indexing_info(2).manual_set]), 1, indexing_info(3).manual_set, indexing_info(3).labels); |
32 saveas(gcf,'./plots/fig3.jpg') | 32 saveas(gcf,'./plots/fig3.jpg') |
33 | 33 |
34 | 34 |
35 do blah | 35 do blah |
36 % % % % % % % % % % % % The rest of this is still under construction, so I have inserted an error in the previous line to halt the script. | 36 % % % % % % % % % % % % The rest of this is still under construction, so I have inserted an error in the previous line to halt the script. |
37 | 37 |
38 % Are the trends qualitatively similar across datasets? | 38 % Are the trends qualitatively similar across datasets? |
39 % Fig 1a | 39 % Fig 1a |
40 figure,[asig pval a a_] = do_correlation3(megadatacube, lab_measures, indexing_info(1).manual_set, [1:9], -1, 0, 1, -1, indexing_info(1).labels, 1); | 40 figure,[asig pval a a_] = do_correlation(megadatacube, lab_measures, indexing_info(1).manual_set, [1:9], -1, 0, 1, -1, indexing_info(1).labels, 1); |
41 figure,[asig pval a a_] = do_correlation3(megadatacube, ismember(mirex_dset_origin,1), indexing_info(1).manual_set, [1:9], -1, 0, 1, -1, indexing_info(1).labels, 1); | 41 figure,[asig pval a a_] = do_correlation(megadatacube, ismember(mirex_dset_origin,1), indexing_info(1).manual_set, [1:9], -1, 0, 1, -1, indexing_info(1).labels, 1); |
42 figure,[asig pval a a_] = do_correlation3(megadatacube, ismember(mirex_dset_origin,3), indexing_info(1).manual_set, [1:9], -1, 0, 1, -1, indexing_info(1).labels, 1); | 42 figure,[asig pval a a_] = do_correlation(megadatacube, ismember(mirex_dset_origin,3), indexing_info(1).manual_set, [1:9], -1, 0, 1, -1, indexing_info(1).labels, 1); |
43 figure,[asig pval a a_] = do_correlation3(megadatacube, ismember(mirex_dset_origin,4), indexing_info(1).manual_set, [1:9], -1, 0, 1, -1, indexing_info(1).labels, 1); | 43 figure,[asig pval a a_] = do_correlation(megadatacube, ismember(mirex_dset_origin,4), indexing_info(1).manual_set, [1:9], -1, 0, 1, -1, indexing_info(1).labels, 1); |
44 % Fig 1b | 44 % Fig 1b |
45 figure, [asig pval a a_] = do_correlation3(megadatacube, lab_measures, sind_manual1, [1:9], -1, 1, 0, -1, indexing_info(1).labels, 1); | 45 figure, [asig pval a a_] = do_correlation(megadatacube, lab_measures, sind_manual1, [1:9], -1, 1, 0, -1, indexing_info(1).labels, 1); |
46 figure, [asig pval a a_] = do_correlation3(megadatacube, ismember(mirex_dset_origin,1), indexing_info(1).manual_set, [1:9], -1, 1, 0, -1, indexing_info(1).labels, 1); | 46 figure, [asig pval a a_] = do_correlation(megadatacube, ismember(mirex_dset_origin,1), indexing_info(1).manual_set, [1:9], -1, 1, 0, -1, indexing_info(1).labels, 1); |
47 figure, [asig pval a a_] = do_correlation3(megadatacube, ismember(mirex_dset_origin,3), indexing_info(1).manual_set, [1:9], -1, 1, 0, -1, indexing_info(1).labels, 1); | 47 figure, [asig pval a a_] = do_correlation(megadatacube, ismember(mirex_dset_origin,3), indexing_info(1).manual_set, [1:9], -1, 1, 0, -1, indexing_info(1).labels, 1); |
48 figure, [asig pval a a_] = do_correlation3(megadatacube, ismember(mirex_dset_origin,4), indexing_info(1).manual_set, [1:9], -1, 1, 0, -1, indexing_info(1).labels, 1); | 48 figure, [asig pval a a_] = do_correlation(megadatacube, ismember(mirex_dset_origin,4), indexing_info(1).manual_set, [1:9], -1, 1, 0, -1, indexing_info(1).labels, 1); |
49 % Fig 2a | 49 % Fig 2a |
50 figure, [asig pval a a_] = do_correlation3(megadatacube, seg_measures, sind_manual2, [1:9], -1, 0, 1, -1, indexing_info(2).labels, 1); | 50 figure, [asig pval a a_] = do_correlation(megadatacube, seg_measures, sind_manual2, [1:9], -1, 0, 1, -1, indexing_info(2).labels, 1); |
51 figure, [asig pval a a_] = do_correlation3(megadatacube, ismember(mirex_dset_origin,1), indexing_info(2).manual_set, [1:9], -1, 0, 1, -1, indexing_info(2).labels, 1); | 51 figure, [asig pval a a_] = do_correlation(megadatacube, ismember(mirex_dset_origin,1), indexing_info(2).manual_set, [1:9], -1, 0, 1, -1, indexing_info(2).labels, 1); |
52 figure, [asig pval a a_] = do_correlation3(megadatacube, ismember(mirex_dset_origin,2), indexing_info(2).manual_set, [1:9], -1, 0, 1, -1, indexing_info(2).labels, 1); | 52 figure, [asig pval a a_] = do_correlation(megadatacube, ismember(mirex_dset_origin,2), indexing_info(2).manual_set, [1:9], -1, 0, 1, -1, indexing_info(2).labels, 1); |
53 figure, [asig pval a a_] = do_correlation3(megadatacube, ismember(mirex_dset_origin,3), indexing_info(2).manual_set, [1:9], -1, 0, 1, -1, indexing_info(2).labels, 1); | 53 figure, [asig pval a a_] = do_correlation(megadatacube, ismember(mirex_dset_origin,3), indexing_info(2).manual_set, [1:9], -1, 0, 1, -1, indexing_info(2).labels, 1); |
54 figure, [asig pval a a_] = do_correlation3(megadatacube, ismember(mirex_dset_origin,4), indexing_info(2).manual_set, [1:9], -1, 0, 1, -1, indexing_info(2).labels, 1); | 54 figure, [asig pval a a_] = do_correlation(megadatacube, ismember(mirex_dset_origin,4), indexing_info(2).manual_set, [1:9], -1, 0, 1, -1, indexing_info(2).labels, 1); |
55 % Fig 2b | 55 % Fig 2b |
56 figure, [asig pval a a_] = do_correlation3(megadatacube, seg_measures, sind_manual2, [1:9], -1, 1, 0, -1, indexing_info(2).labels, 1); | 56 figure, [asig pval a a_] = do_correlation(megadatacube, seg_measures, sind_manual2, [1:9], -1, 1, 0, -1, indexing_info(2).labels, 1); |
57 figure, [asig pval a a_] = do_correlation3(megadatacube, ismember(mirex_dset_origin,1), indexing_info(2).manual_set, [1:9], -1, 1, 0, -1, indexing_info(2).labels, 1); | 57 figure, [asig pval a a_] = do_correlation(megadatacube, ismember(mirex_dset_origin,1), indexing_info(2).manual_set, [1:9], -1, 1, 0, -1, indexing_info(2).labels, 1); |
58 figure, [asig pval a a_] = do_correlation3(megadatacube, ismember(mirex_dset_origin,2), indexing_info(2).manual_set, [1:9], -1, 1, 0, -1, indexing_info(2).labels, 1); | 58 figure, [asig pval a a_] = do_correlation(megadatacube, ismember(mirex_dset_origin,2), indexing_info(2).manual_set, [1:9], -1, 1, 0, -1, indexing_info(2).labels, 1); |
59 figure, [asig pval a a_] = do_correlation3(megadatacube, ismember(mirex_dset_origin,3), indexing_info(2).manual_set, [1:9], -1, 1, 0, -1, indexing_info(2).labels, 1); | 59 figure, [asig pval a a_] = do_correlation(megadatacube, ismember(mirex_dset_origin,3), indexing_info(2).manual_set, [1:9], -1, 1, 0, -1, indexing_info(2).labels, 1); |
60 figure, [asig pval a a_] = do_correlation3(megadatacube, ismember(mirex_dset_origin,4), indexing_info(2).manual_set, [1:9], -1, 1, 0, -1, indexing_info(2).labels, 1); | 60 figure, [asig pval a a_] = do_correlation(megadatacube, ismember(mirex_dset_origin,4), indexing_info(2).manual_set, [1:9], -1, 1, 0, -1, indexing_info(2).labels, 1); |
61 | 61 |
62 | 62 |
63 % "Does this indicate that the algorithms are better at boundary precision than recall? In fact, the opposite is the case: average bp6 bp.5 was simply consistently worse for most algorithms." | 63 % "Does this indicate that the algorithms are better at boundary precision than recall? In fact, the opposite is the case: average bp6 bp.5 was simply consistently worse for most algorithms." |
64 % For all algos: | 64 % For all algos: |
65 mean(median(megadatacube(:,sind_manual2,:),3),1) | 65 mean(median(megadatacube(:,sind_manual2,:),3),1) |