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ABSTRACT

The Music Information Retrieval Evaluation eXchange 
(MIREX) serves an essential function in the MIR com-
munity, but researchers have noted that the anonymity of 
its datasets, while useful, has made it difficult to interpret 
the successes and failures of the algorithms. We use the 
results of the 2012 MIREX Structural Segmentation task, 
which was accompanied by anonymous ground truth, to 
conduct a meta-evaluation of the algorithms. We hope 
this demonstrates the benefits, to both the participants 
and evaluators of MIREX, of releasing more data in 
evaluation tasks.
 Our aim is to learn more about the performance of the 
algorithms by studying how their success relates to prop-
erties of the annotations and recordings. We find that 
some evaluation metrics are redundant, and that several 
algorithms do not adequately model the true number of 
segments in typical annotations We also use publicly 
available ground truth to identify many of the recordings 
in the MIREX test sets,  allowing us to identify specific 
pieces on which algorithms generally performed poorly 
and to discover where the most improvement is needed.

1. INTRODUCTION

MIREX is a highly valued event in the MIR community. 
Modeled in large part on the evaluations conducted by the 
Text Retrieval Conference, its role is to establish bench-
marks of performance and to allow the community to 
compare the efficacy of different approaches [5]. MIREX 
also stimulates competition and helps to drive innovation 
in areas that the community feels are valuable.
 At previous ISMIR conferences, the problems facing 
MIREX have been a frequent topic of discussion. Some 
of these are challenges for any evaluation: e.g., the high 
cost of generating ground truth,  and the legality of shar-
ing the music in most test collections [5]. However, [14] 
points out some issues specific to MIREX, including the  
problem of hidden data: namely, the results published by 
MIREX do not identify the songs used in the evaluation 
or provide metadata other than a general description of 
the corpus. For example, in the Audio Key Detection 
task, participants can see how often their algorithm 
makes different kinds of mistakes—e.g., being off by a 
major fifth or by a relative key—but cannot see on which 
pieces their algorithm made the mistakes, or see other 
information related to the piece, such as the composer, 
instrumentation, or key.

 In his call for more meta-evaluation, Urbano points 
out that the hidden nature of the MIREX testing data im-
pedes the learning phase of algorithm development [20]. 
That is, although MIREX evaluations allow the commu-
nity to compare the performance of state-of-the-art algo-
rithms,  it is difficult to learn from the mistakes of the 
algorithms without any information about the ground 
truth. For example, although a researcher could learn that 
their key-detection algorithm makes many parallel key 
errors, they would have no idea in what situations their 
algorithm is more likely to make these kinds of errors.
 While improving MIREX by creating new ground 
truth or copyright-free datasets would be expensive, it 
would only require a change in publishing policies for 
MIREX to release more detailed evaluation data.  In fact, 
such a change in policy was recently made for the Audio 
Structural Segmentation (SS) task: in 2012, MIREX 
posted not only the performance of each algorithm on 
each piece in the datasets, but the output of the algo-
rithms and the matching annotation. This allows the 
community for the first time to look more deeply into the 
large-scale MIREX evaluation, and potentially identify 
patterns in the performance of the algorithms in order to 
improve them..
 Urbano also recognized the need for more meta-
evaluation in the MIR community [20]. Meta evaluation, 
or the analysis of evaluation systems,  is a popular subject 
in the text retrieval community (e.g.,  [4]) but has received 
less attention in MIR. A meta-evaluation investigates 
whether an evaluation experiment accomplishes its pur-
pose: do the metrics measure the desired quantities or 
qualities? Is the experiment fairly and effectively estimat-
ing the relative quality of different algorithms? With the 
release of ground truth data in the 2012 SS task,  we can 
attempt to answer some of these questions.
 The SS task was introduced to MIREX in 2009,  and 
by then had already been the subject of a meta-
evaluation of performance metrics: the merits and short-
comings of over a dozen previously used metrics was 
discussed in [10], which proposed an additional two. In 
[6], an extended evaluation of the algorithms submitted 
to the 2011 MIREX SS task, the authors accessed the 
algorithms submitted to MIREX in 2010 and tested them 
on the newly available SALAMI corpus [19]. They com-
pared the algorithms’  performance on the large- and 
small-scale segmentation data, on the different genres 
within SALAMI and on the different MIREX datasets. 
With the new MIREX task came a greater interest in 
generating test collections and designing appropriate 
methodologies: [13] made recommendations that were 
adapted by [19] in the creation of the SALAMI dataset, 
while [3] conceived an alternative methodology, leading 
to the INRIA collections of annotations.

 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies 
are not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. 
© 2013 International Society for Music Information Retrieval 



 In this article,  we study the results of the 2012 
MIREX SS task for these two purposes: first, to learn 
about the failure modes of the current state of the art 
algorithms, and second,  to appraise the success of the 
task so far. In Section 2, we review the test sets, algo-
rithms,  and evaluation metrics involved in the SS task.  In 
Section 3, we conduct a correlation analysis of the SS 
evaluation results to find which metrics and basic fea-
tures could be measuring the same quantities. In Section 
4, we show how the ground truth released in 2012 allows 
us to identify many of the anonymous pieces in the pub-
lished results,  and we survey some of the easiest and 
hardest songs to analyze.

2. THE STRUCTURE SEGMENTATION TASK

In this section we summarize the materials of the 2012 
SS task: the algorithms submitted,  the test data used, and 
the evaluation metrics calculated.

2.1  Algorithms

Five algorithms were evaluated in the 2012 MIREX SS 
task: KSP [8], MHRAF [11], OYZS, SBV [16] and 
SMGA [17].  KSP was submitted with four different pa-
rameter settings, and two versions of SMGA were sub-
mitted,  resulting in nine algorithm runs. The algorithms 
are outlined in abstracts published with the MIREX re-
sults, although no abstract is posted for OYZS, and the 
difference between the two versions of SMGA is not 
specified in [17]. The four algorithms with abstracts are 
briefly compared below.
 Among the most important differences between the 
algorithms is each one’s hypothesis about what musical 
structure is. Using the terminology of [12], the KSP algo-
rithm uses the states hypothesis, which holds that sec-
tions are musically homogenous and distinct from one 
another. MHRAF uses the sequences hypothesis, which 
holds that sections are defined by distinct sequences. 
SMGA uses a combined approach, employing a novel 
feature representation that captures information about 
long-term repetitions and short-term homogeneity.  Fi-
nally, SBV is based on the novel “system and contrast” 
theory of musical structure described in [2]. The algo-
rithm expects that sections will consist of 4 groups of 4 
measures, with the fourth group either conforming to or 
contrasting with the system of musical relationships es-
tablished by the previous three groups. Other important 
differences between the algorithms are:
• MHRAF, SBV and SMGA all use harmonic features, 

while KSP uses a combination of harmonic and timbral 
features.

• All the algorithms except for MHRAF estimate 
boundaries first and then estimate segment labels; the 
MHRAF algorithm detects repetitions first and uses 
these to define the segmentation.

• SBV is the only algorithm to employ a beat-detection 
step to align the analysis frames.

• The parameters of the SBV algorithm were set from a 
test on the INRIA annotations of the RWC database, 
and a version of SMGA was previously tested on the 
Beatles and RWC datasets [18].

2.2  MIREX data

The 2012 SS task was evaluated using three datasets:

• MIREX09: A set of 297 pieces introduced in 2009, 
with annotations taken from the EP [22], Isophonics 
[24] and TUT collections [26]. According to the analy-
sis in Section 4,  of the 343 distinct annotations in these 
collections, the MIREX test set includes pieces by The 
Beatles, Carole King, Michael Jackson, and Queen.

• MIREX10: The RWC popular music database, which 
consists of 100 Japanese pop tunes, with annotations 
provided by AIST [7, 21] and by INRIA [3,  23]. The 
INRIA annotations only give boundaries and were first 
tested in 2010; the AIST annotations, introduced to 
MIREX in 2011, also provide section labels. INRIA 
annotations with segment labels were recently intro-
duced [2].

• MIREX12: The SALAMI data [25], introduced to 
MIREX 2012,  and consisting of approximately 859 
pieces, over 500 of them with annotations by two lis-
teners [19]. The pieces include popular,  classical, world 
and jazz recordings, publicly available live recordings 
taken from the Internet Archive,  and some pieces bor-
rowed from the Isophonics and RWC collections.

Each of the collections were produced by a small number 
of listeners (fewer than 10 each) annotating the structure 
they perceived,  but differed in their methodology. The 
Beatles annotations were adapted from musicologist Al-
lan Pollack’s descriptions [15]. Many of the RWC anno-
tations benefitted from a beat-tracked grid computed 
from a click track, and only the “obvious” sections were 
annotated, meaning there are some unannotated gaps in 
the descriptions [7].  Most SALAMI pieces were anno-
tated by two listeners, and its annotations have separate 
layers for musical function, similarity at two timescales, 
and leading instrumentation. Finally, the INRIA annota-
tions indicate boundaries according to a more concrete 
definition of segments [3].

2.3  Evaluation metrics

For the SS task, MIREX published 14 of the most com-
mon metrics reported in the literature: pairwise retrieval 
(precision pwp,  recall pwr and f-measure pwf), proposed 
by [9]; over- and under-segmentation scores (SO and SU, 
respectively),  proposed in [10]; Rand index (R), a metric 
for comparing partitions of data first used for structural 
segmentation in the 2009 MIREX task; boundary re-
trieval with a specified tolerance of 3 seconds (precision 
bp3,  recall br3 and f-measure bf3) or 0.5 seconds (bp.5, br.5, 
bf.5); and the median distance from each true to the near-
est claimed boundary (mt2c) and vice versa (mc2t). Since 
the output of each algorithm is also available [27], it is 
possible to evaluate the algorithms with metrics not pub-
lished by MIREX. We did so for 5 other metrics: average 
cluster purity (acp) and speaker purity (asp), and their 
summary metric called the K-measure (K), mentioned by 
[10] as a potential metric in MIR; and the fragmentation 
and missed-boundary scores (f and m, respectively) used 
by [1].
 Some of these metrics evaluate boundary estimation, 
and the others evaluate the grouping of sections.  Bound-
ary estimation measures either penalize over-
segmentation, under-segmentation, or both. Similarly, 
grouping metrics either penalize the estimation of spuri-
ous similarity relationships, the omission of true similar-
ity relationships, or both. Table 1 summarizes the general 
purpose of the different metrics. Although each metric is 

 



distinct, we expect the metrics in a single group will 
agree with each other.

3. CORRELATION ANALYSIS

With so many metrics we would like to know whether the 
metrics in fact measure different things. This problem can 
be posed in two ways: first, do the metrics differ in how 
they rank the algorithms? And second, do they differ in 
how they rank the difficulty of analyzing each recording?
 Since our data (the evaluation metrics) are not nor-
mally distributed, we compute Kendall’s τ rather than the 
Pearson correlation.  Consider all pairs of items in two 
ranked lists; if p is the probability that the lists agree on 
how to rank a pair,  then τ = p – (1 – p) and ranges from τ 
= 1 for identical rankings to τ = –1 for reversed rankings. 
With independent lists of rankings, τ is a random variable 
with mean 0,  and we can estimate the precision with 
which τ has been measured. In all the correlation plots 
that follow, we use the simple, conservative Bonferonni 
correction to determine which values for τ are signifi-
cantly non-zero. Saying whether a given value of τ indi-
cates a “strong” or “weak” correlation remains a subjec-
tive decision; we arbitrarily deem |τ|  ≥ 0.8 as a strong 
correlation (for positive values, this means that two lists 
rank at least 9 in 10 pairs of items the same way), |τ|  ≥ 
0.33 as a weak correlation (2 in 3 pairs are ranked the 
same), and |τ| < 0.33 as no correlation.

3.1  Correlation among metrics

The agreement between the metrics when the algorithms 
are ranked according to the median grade achieved is 
shown in Figure 1a. The trio of evaluation measures not 
used by MIREX (K, asp, acp) rank the algorithms very 
similarly to the pairwise retrieval metrics (pwf, pwr, and 
pwp, respectively), supporting their exclusion from 
MIREX evaluations for being redundant. We expected 
each metric to be most similar to other metrics measuring 
the same type of error (under-segmentation, over-
segmentation, and both together), but instead we find the 
over-segmentation metric SO is more similar to the sum-
mary metrics pwf and K; and the intended summary met-
ric R is more similar to the under-segmentation metrics 
SU, pwp and acp.
 We can also see whether the ranking of the recordings 
according to difficulty depends on the metric. Here the 
results (see Figure 1b) conform more to our expectations: 
K, asp and acp are again found to be redundant; SU and 

SO are grouped appropriately with pwr and pwp,  but R 
now resembles an over-segmentation metric.

Performing the same analysis with the boundary 
evaluation metrics, we again find that related metrics are 
somewhat redundant: bp3, 1-f, and mc2t are highly inter-
correlated, as are br.5, br3, 1-m and mt2c (see Figure 2a). 
Interestingly, bp.5 does not correlate with bp3 or the other 
over-segmentation metrics; locating boundaries to within 
3 seconds and to within 0.5 seconds are perhaps two dis-
tinct skills. This discrepancy is not true for br.5 and br3, 
and hence is probably the cause of the surprising finding 
that the boundary f-measure summary metrics (bf3 and 
bf.5) also do not intercorrelate significantly.

When ranking the recordings (Figure 2b), the groups 
of metrics (summary, over- and under-segmentation) are 
each consistent, but the summary metrics are also similar 
to the over-segmentation ones. Does this indicate that the 
algorithms are better at boundary precision than recall? In 
fact, the opposite is the case: mean bp3 and bp.5 were 
simply consistently worse for all algorithms.

Lastly, while there is insufficient space to demonstrate 
it,  the findings of this section were consistent across the 
datasets, albeit with some variation in significance levels.

 

Figure 1a (top). Agreement (Kendall’s τ) between 
rankings of algorithms (according to median across all 
recordings) by different labelling metrics. All values of 
τ ≥ 0.33 are plotted. Shaded backgrounds indicate sig-
nificance; bold values indicate strong agreements.
Figure 1b (above). Agreement in the ranking of re-
cordings by different labelling metrics.

Table 1. Summary of the metrics by evaluation purpose.

Purpose of the metric Boundary 
metrics

Label
metrics

Summary metric bf3, bf.5 pwf, R, K

Penalize over-
segmentation (spurious 
boundaries and omitted 
similarity relationships)

bp3, bp.5,
1–f, mc2t

pwr, SO, 
asp

Penalize under-
segmentation (omitted 
boundaries and spurious 
similarity relationships)

br3, br.5,
1–m, mt2c

pwp, SU, 
acp



3.2  Correlation with ground truth properties

The preceding analysis uses only the evaluation data, 
not the additional ground truth information made avail-
able for the 2012 SS task. With the ground truth we can 
push the correlation one step further and check whether 
there are simple properties of the annotated and estimated 
descriptions that strongly influence the evaluation met-
rics. For example,  it could be that the algorithms simply 
find longer songs to be more difficult to analyze.

We tested the correlation between all the preceding 
metrics and the length of the recording (len), as well as 
ten other properties. Four are properties of the annotation: 
number of segments (nsa), number of unique labels (nla), 
mean segment length (msla) and the number of segments 
per label (nspla). The next four are the same properties for 
the estimated description (nse, nle,  msle, nsple).  We also 
take the number of extra segments estimated (nse–nsa) as 
a “direct” over-segmentation measure for boundaries 
(ob),  and likewise the number of extra labels (nle–nla) as 
the over-segmentation measure for labels (ol).

The correlation between these properties reveals an 
interesting mismatch between the algorithms and the an-
notations with regard to the mean segment length. In the 
annotations, song length correlates significantly with 
mean segment length (τ = 0.37),  but hardly at all with the 
number of segments (0.22). The pattern is reversed 

among the algorithm outputs, where song length barely 
correlates with mean segment length (0.25) but strongly 
with the number of segments (0.72). It appears that the 
algorithms do not model how listeners tend to identify a 
number of sections that is stable across most pieces: 
while the middle half of the values of nsa ranges from 7 
and 13 segments, the middle values for nse for most algo-
rithms range from 11 to 20 segments. The two exceptions 
are MHRAF and OYZS, for which both msle and nse 
match the distributions seen in the annotations.

This shortcoming of the algorithms is reflected in the 
strong dependence of boundary estimation metrics on the 
mean segment length in the annotation (msla): worse val-
ues of bp, 1-f and mc2t, all of which punish spurious 
boundary estimation, are correlated with longer annotated 
segments.

Figure 3 also shows that the label evaluation metrics 
seem more sensitive to the number of unique labels in the 
annotation (nla). When nla is high, so are asp and SO 
(these reflect over-segmentation errors, which are more 
difficult to make with more fine-grained annotations), 
while pwp and acp are reduced, indicating a susceptibility 
to under-segmentation errors.  This dependence suggests 
that algorithms have difficulty estimating the number of 
unique segment types heard by a listener.

4. IDENTIFYING MIREX RECORDINGS

In the 2012 SS task, ground truth and the estimated 
analysis of each algorithm were provided for each piece. 

 

Figure 2a (top). Agreement in the ranking of algo-
rithms by different boundary metrics.
Figure 2b (above). Agreement in the ranking of re-
cordings by different boundary metrics.

Figure 3. Agreement in the ranking of recordings be-
tween metrics and properties of the annotated and es-
timated descriptions.



Since the ground truth collections used by MIREX are 
publically available, we can try to identify the recordings 
in the evaluation by matching the anonymized ground 
truth published by MIREX with public ground truth.
 Before we identify the recordings, we acknowledge 
that there are advantages to keeping test data private: it is 
difficult for the designers of algorithms to overfit to hid-
den data, which means the same data can be reused in 
successive years; this is useful since ground truth is ex-
pensive to create. However, to learn from an evaluation 
with private data would require the task moderators to 
conduct meta-evaluation, which is also costly. Moreover, 
for the SS task, most of the annotation data is already 
public, and the Beatles and RWC datasets are already 
widely distributed—indeed, RWC was designed in order 
to be distributable at cost, without regard for copyright 
issues. Hence the main advantages of private data do not 
apply to this task.
 The collections used in the SS task are summarized in 
Table 2. We downloaded all the publicly available anno-
tations for these sources [21–26] to compile a grand pub-
lic corpus,  as well as all MIREX output and annotation 
for the SS task [27]. For every anonymous MIREX anno-
tation, we searched for public annotations where the 
lengths of the pieces differed by less than 15 seconds, and 
computed the boundary f-measure between them. If the 
boundary f-measure exceeded 0.99, we assumed a match 
was found. Checking many of the matches informally, it 
was clear the match was correct.
 The number of annotations in the four test collections 
is provided in Table 1, as well as the number of pieces 
that were positively matched with an existing annotation. 
The greatest number of pieces missed were in the SA-
LAMI collection. This is to be expected since half of the 
SALAMI data remains private.
 Associating the MIREX results with actual recordings 
allows us to search for possible commonalities between 
the recordings that were “easiest” and “hardest” to anno-
tate. The piece with the highest median pwf is The Beat-
les’ “Her Majesty,” a 30-second song with just one sec-
tion.  When a song has just one section,  any algorithm is 
guaranteed to get pairwise precision of 1, and the only 
boundaries in the song are within 3 seconds of its begin-
ning and end, ensuring boundary recall of 1 as well. The 
next-best Beatles song, “I Will”, is an instance where 
both the states and sequences hypotheses apply well: the 
repeating sections are relatively homogeneous, but con-
tain distinct harmonic sequences.  Also, like “Her Maj-

esty,” the song is short and contains few sections, reduc-
ing the chance of under-segmentation.
 On the opposite end, the worst overall performance in 
the MIREX09 dataset is on songs by Queen and Michael 
Jackson. At the bottom is Jackson’s “They Don’t Care 
About Us”. The nine algorithms’  output for this song, 
along with the ground truth and pwf scores, are shown in 
Figure 4. This song is highly repetitive, especially har-
monically, although the sung portions are very distinct 
from the instrumental sections: intro (before 0:42), outro 
(after 3:50), and interlude (2:40 to 3:10). Most of the es-
timated descriptions discover this overall structure, but 
fail to differentiate between the similar verses and cho-
ruses.  Perhaps algorithms will need to employ more than 
just harmonic features to improve performance on a case 
like this.
 On the other hand,  the annotation also labels the end 
of the song differently from the chorus, even though they 
sound similar. That is, the annotation conflates musical 
similarity with musical function, the situation discussed 
by [13]. To improve performance, MIREX may wish to 
update its ground truth to reflect primarily musical simi-
larity; or, algorithms should aim to characterize the se-
mantic labels usually ignored in an analysis.
 Conspicuously, 17 of the easiest 20 songs (again, with 
respect to pwf) are Beatles tunes, while only 2 of the most 
difficult 20 songs are—the rest being Michael Jackson, 
Queen and Carole King songs.  Taking the median pwf 
across the algorithms and comparing this value for the 
274 annotations identified as one of these four artists,  a 
Kruskal-Wallis test confirms that the groups differ. A 
multiple comparison test reveals that pwf is significantly 
greater for the Beatles group than the three others. The 
simplest explanation is that the songs by the other artists 
are simply more challenging to analyze than the bulk of 
the Beatles catalogue. However, this may be evidence 
that the community is overlearning on the Beatles dataset, 
which has been widely distributed and used as a test col-
lection for at least 6 years.

5. CONCLUSION

We revisited the 2012 MIREX Structure Segmentation 
task to better understand the performance of the algo-

 

Figure 4. Annotated ground truth and algorithm output 
for “They Don’t Care About Us” by Michael Jackson. 
The median pwf achieved by these algorithms was 
among the lowest in all of MIREX 2012.

MIREX 
dataset

Dataset con-
tents

Number 
of pieces

Number 
of pieces 
identified

mrx09 Beatles, Queen, 
Michael Jackson

297 274

mrx10_1 RWC Popular 100 100

mrx10_2 RWC Popular 100 100

sal SALAMI 1000 674

Table 2. Summary of the annotations identified in each 
corpus



rithms and the behaviour of the evaluation metrics. Using 
a correlation analysis, we identified the same metrics 
excluded from MIREX as redundant (K, asp, acp) and 
one as unstable and biased (R).  Thanks to the release of 
the ground truth and algorithm output with the 2012 
MIREX SS task, we were able to investigate the relation-
ship between evaluation metrics and simple properties of 
the annotated and estimated descriptions,  identifying the 
lack of regularity in the number of segments per song as a 
hindrance to many submissions.
 We hope that this investigation serves as a positive 
example of the kind of learning that can be accomplished 
through meta-analysis. Other MIREX tasks could benefit 
from the release of algorithm output data and information 
about the ground truth. While the MIR community must 
weigh the value of open evaluations with the cost of new 
datasets,  note that it is not necessary to release all the 
ground truth to benefit a meta-analysis: indeed, this 
analysis focused mainly on non-identifying parameters of 
the annotations (Section 3.2) and only a few high- and 
low-performing songs.
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