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ABSTRACT

The Music Information Retrieval Evaluation eXchange
(MIREX) serves an essential function in the MIR com-
munity, but researchers have noted that the anonymity of
its datasets, while useful, has made it difficult to interpret
the successes and failures of the algorithms. We use the
results of the 2012 MIREX Structural Segmentation task,
which was accompanied by anonymous ground truth, to
conduct a meta-evaluation of the algorithms. We hope
this demonstrates the benefits, to both the participants
and evaluators of MIREX, of releasing more data in
evaluation tasks.

Our aim is to learn more about the performance of the
algorithms by studying how their success relates to prop-
erties of the annotations and recordings. We find that
some evaluation metrics are redundant, and that several
algorithms do not adequately model the true number of
segments in typical annotations We also use publicly
available ground truth to identify many of the recordings
in the MIREX test sets, allowing us to identify specific
pieces on which algorithms generally performed poorly
and to discover where the most improvement is needed.

1. INTRODUCTION

MIREX is a highly valued event in the MIR community.
Modeled in large part on the evaluations conducted by the
Text Retrieval Conference, its role is to establish bench-
marks of performance and to allow the community to
compare the efficacy of different approaches [5]. MIREX
also stimulates competition and helps to drive innovation
in areas that the community feels are valuable.

At previous ISMIR conferences, the problems facing
MIREX have been a frequent topic of discussion. Some
of these are challenges for any evaluation: e.g., the high
cost of generating ground truth, and the legality of shar-
ing the music in most test collections [5]. However, [14]
points out some issues specific to MIREX, including the
problem of hidden data: namely, the results published by
MIREX do not identify the songs used in the evaluation
or provide metadata other than a general description of
the corpus. For example, in the Audio Key Detection
task, participants can see how often their algorithm
makes different kinds of mistakes—e.g., being off by a
major fifth or by a relative key—but cannot see on which
pieces their algorithm made the mistakes, or see other
information related to the piece, such as the composer,
instrumentation, or key.
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In his call for more meta-evaluation, Urbano points
out that the hidden nature of the MIREX testing data im-
pedes the learning phase of algorithm development [20].
That is, although MIREX evaluations allow the commu-
nity to compare the performance of state-of-the-art algo-
rithms, it is difficult to learn from the mistakes of the
algorithms without any information about the ground
truth. For example, although a researcher could learn that
their key-detection algorithm makes many parallel key
errors, they would have no idea in what situations their
algorithm is more likely to make these kinds of errors.

While improving MIREX by creating new ground
truth or copyright-free datasets would be expensive, it
would only require a change in publishing policies for
MIREX to release more detailed evaluation data. In fact,
such a change in policy was recently made for the Audio
Structural Segmentation (SS) task: in 2012, MIREX
posted not only the performance of each algorithm on
each piece in the datasets, but the output of the algo-
rithms and the matching annotation. This allows the
community for the first time to look more deeply into the
large-scale MIREX evaluation, and potentially identify
patterns in the performance of the algorithms in order to
improve them..

Urbano also recognized the need for more meta-
evaluation in the MIR community [20]. Meta evaluation,
or the analysis of evaluation systems, is a popular subject
in the text retrieval community (e.g., [4]) but has received
less attention in MIR. A meta-evaluation investigates
whether an evaluation experiment accomplishes its pur-
pose: do the metrics measure the desired quantities or
qualities? Is the experiment fairly and effectively estimat-
ing the relative quality of different algorithms? With the
release of ground truth data in the 2012 SS task, we can
attempt to answer some of these questions.

The SS task was introduced to MIREX in 2009, and
by then had already been the subject of a meta-
evaluation of performance metrics: the merits and short-
comings of over a dozen previously used metrics was
discussed in [10], which proposed an additional two. In
[6], an extended evaluation of the algorithms submitted
to the 2011 MIREX SS task, the authors accessed the
algorithms submitted to MIREX in 2010 and tested them
on the newly available SALAMI corpus [19]. They com-
pared the algorithms’ performance on the large- and
small-scale segmentation data, on the different genres
within SALAMI and on the different MIREX datasets.
With the new MIREX task came a greater interest in
generating test collections and designing appropriate
methodologies: [13] made recommendations that were
adapted by [19] in the creation of the SALAMI dataset,
while [3] conceived an alternative methodology, leading
to the INRIA collections of annotations.



In this article, we study the results of the 2012
MIREX SS task for these two purposes: first, to learn
about the failure modes of the current state of the art
algorithms, and second, to appraise the success of the
task so far. In Section 2, we review the test sets, algo-
rithms, and evaluation metrics involved in the SS task. In
Section 3, we conduct a correlation analysis of the SS
evaluation results to find which metrics and basic fea-
tures could be measuring the same quantities. In Section
4, we show how the ground truth released in 2012 allows
us to identify many of the anonymous pieces in the pub-
lished results, and we survey some of the easiest and
hardest songs to analyze.

2. THE STRUCTURE SEGMENTATION TASK

In this section we summarize the materials of the 2012
SS task: the algorithms submitted, the test data used, and
the evaluation metrics calculated.

2.1 Algorithms

Five algorithms were evaluated in the 2012 MIREX SS
task: KSP [8], MHRAF [11], OYZS, SBV [16] and
SMGA [17]. KSP was submitted with four different pa-
rameter settings, and two versions of SMGA were sub-
mitted, resulting in nine algorithm runs. The algorithms
are outlined in abstracts published with the MIREX re-
sults, although no abstract is posted for OYZS, and the
difference between the two versions of SMGA is not
specified in [17]. The four algorithms with abstracts are
briefly compared below.

Among the most important differences between the
algorithms is each one’s hypothesis about what musical
structure is. Using the terminology of [12], the KSP algo-
rithm uses the states hypothesis, which holds that sec-
tions are musically homogenous and distinct from one
another. MHRAF uses the sequences hypothesis, which
holds that sections are defined by distinct sequences.
SMGA uses a combined approach, employing a novel
feature representation that captures information about
long-term repetitions and short-term homogeneity. Fi-
nally, SBV is based on the novel “system and contrast”
theory of musical structure described in [2]. The algo-
rithm expects that sections will consist of 4 groups of 4
measures, with the fourth group either conforming to or
contrasting with the system of musical relationships es-
tablished by the previous three groups. Other important
differences between the algorithms are:

« MHRAF, SBV and SMGA all use harmonic features,
while KSP uses a combination of harmonic and timbral
features.

» All the algorithms except for MHRAF estimate
boundaries first and then estimate segment labels; the
MHRAF algorithm detects repetitions first and uses
these to define the segmentation.

* SBV is the only algorithm to employ a beat-detection
step to align the analysis frames.

* The parameters of the SBV algorithm were set from a
test on the INRIA annotations of the RWC database,
and a version of SMGA was previously tested on the
Beatles and RWC datasets [18].

2.2 MIREX data
The 2012 SS task was evaluated using three datasets:

*« MIREX09: A set of 297 pieces introduced in 2009,

with annotations taken from the EP [22], Isophonics

[24] and TUT collections [26]. According to the analy-

sis in Section 4, of the 343 distinct annotations in these

collections, the MIREX test set includes pieces by The

Beatles, Carole King, Michael Jackson, and Queen.

MIREX10: The RWC popular music database, which

consists of 100 Japanese pop tunes, with annotations

provided by AIST [7, 21] and by INRIA [3, 23]. The

INRIA annotations only give boundaries and were first

tested in 2010; the AIST annotations, introduced to

MIREX in 2011, also provide section labels. INRIA

annotations with segment labels were recently intro-

duced [2].

* MIREX12: The SALAMI data [25], introduced to
MIREX 2012, and consisting of approximately 859
pieces, over 500 of them with annotations by two lis-
teners [19]. The pieces include popular, classical, world
and jazz recordings, publicly available live recordings
taken from the Internet Archive, and some pieces bor-
rowed from the Isophonics and RWC collections.

Each of the collections were produced by a small number
of listeners (fewer than 10 each) annotating the structure
they perceived, but differed in their methodology. The
Beatles annotations were adapted from musicologist Al-
lan Pollack’s descriptions [15]. Many of the RWC anno-
tations benefitted from a beat-tracked grid computed
from a click track, and only the “obvious” sections were
annotated, meaning there are some unannotated gaps in
the descriptions [7]. Most SALAMI pieces were anno-
tated by two listeners, and its annotations have separate
layers for musical function, similarity at two timescales,
and leading instrumentation. Finally, the INRIA annota-
tions indicate boundaries according to a more concrete
definition of segments [3].

2.3 Evaluation metrics

For the SS task, MIREX published 14 of the most com-
mon metrics reported in the literature: pairwise retrieval
(precision pwp, recall pw, and f~measure pwy), proposed
by [9]; over- and under-segmentation scores (So and Su,
respectively), proposed in [10]; Rand index (R), a metric
for comparing partitions of data first used for structural
segmentation in the 2009 MIREX task; boundary re-
trieval with a specified tolerance of 3 seconds (precision
bps, recall by and f~measure by3) or 0.5 seconds (bp.s, brs,
brs); and the median distance from each true to the near-
est claimed boundary (mt2c) and vice versa (mc2f). Since
the output of each algorithm is also available [27], it is
possible to evaluate the algorithms with metrics not pub-
lished by MIREX. We did so for 5 other metrics: average
cluster purity (acp) and speaker purity (asp), and their
summary metric called the K-measure (K), mentioned by
[10] as a potential metric in MIR; and the fragmentation
and missed-boundary scores (f and m, respectively) used
by [1].

Some of these metrics evaluate boundary estimation,
and the others evaluate the grouping of sections. Bound-
ary estimation measures either penalize over-
segmentation, under-segmentation, or both. Similarly,
grouping metrics either penalize the estimation of spuri-
ous similarity relationships, the omission of true similar-
ity relationships, or both. Table 1 summarizes the general
purpose of the different metrics. Although each metric is



Purpose of the metric Bound-ary LabFl
metrics metrics

Summary metric bs, bys pwi R K
Penalize over- bps, bp.s, pwr, So,
segmentation (spurious 1—f, mc2t asp
boundaries and omitted
similarity relationships)
Penalize under- br3, brs, pwp, Su,
segmentation (omitted I-m, mt2c¢ | acp
boundaries and spurious
similarity relationships)

Table 1. Summary of the metrics by evaluation purpose.

distinct, we expect the metrics in a single group will
agree with each other.

3. CORRELATION ANALYSIS

With so many metrics we would like to know whether the
metrics in fact measure different things. This problem can
be posed in two ways: first, do the metrics differ in how
they rank the algorithms? And second, do they differ in
how they rank the difficulty of analyzing each recording?

Since our data (the evaluation metrics) are not nor-
mally distributed, we compute Kendall’s t rather than the
Pearson correlation. Consider all pairs of items in two
ranked lists; if p is the probability that the lists agree on
how to rank a pair, then T = p — (1 — p) and ranges from t
=1 for identical rankings to T = —1 for reversed rankings.
With independent lists of rankings, T is a random variable
with mean 0, and we can estimate the precision with
which t has been measured. In all the correlation plots
that follow, we use the simple, conservative Bonferonni
correction to determine which values for t are signifi-
cantly non-zero. Saying whether a given value of 1 indi-
cates a “strong” or “weak” correlation remains a subjec-
tive decision; we arbitrarily deem |t] > 0.8 as a strong
correlation (for positive values, this means that two lists
rank at least 9 in 10 pairs of items the same way), |t| >
0.33 as a weak correlation (2 in 3 pairs are ranked the
same), and |t| < 0.33 as no correlation.

3.1 Correlation among metrics

The agreement between the metrics when the algorithms
are ranked according to the median grade achieved is
shown in Figure la. The trio of evaluation measures not
used by MIREX (X, asp, acp) rank the algorithms very
similarly to the pairwise retrieval metrics (pwy; pws, and
pwp, tespectively), supporting their exclusion from
MIREX evaluations for being redundant. We expected
each metric to be most similar to other metrics measuring
the same type of error (under-segmentation, over-
segmentation, and both together), but instead we find the
over-segmentation metric So is more similar to the sum-
mary metrics pwrand K; and the intended summary met-
ric R is more similar to the under-segmentation metrics
Su, pwp and acp.

We can also see whether the ranking of the recordings
according to difficulty depends on the metric. Here the
results (see Figure 1b) conform more to our expectations:
K, asp and acp are again found to be redundant; Sy and

So are grouped appropriately with pw, and pw,, but R
now resembles an over-segmentation metric.

Performing the same analysis with the boundary
evaluation metrics, we again find that related metrics are
somewhat redundant: bp;, I-f, and mc2t are highly inter-
correlated, as are br.s, brs, 1-m and mt2c (see Figure 2a).
Interestingly, bp.s does not correlate with bps or the other
over-segmentation metrics; locating boundaries to within
3 seconds and to within 0.5 seconds are perhaps two dis-
tinct skills. This discrepancy is not true for brs and brs,
and hence is probably the cause of the surprising finding
that the boundary f-measure summary metrics (bf3 and
bf's) also do not intercorrelate significantly.

When ranking the recordings (Figure 2b), the groups
of metrics (summary, over- and under-segmentation) are
each consistent, but the summary metrics are also similar
to the over-segmentation ones. Does this indicate that the
algorithms are better at boundary precision than recall? In
fact, the opposite is the case: mean bp; and bp.s were
simply consistently worse for all algorithms.

Lastly, while there is insufficient space to demonstrate
it, the findings of this section were consistent across the
datasets, albeit with some variation in significance levels.
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Figure 1a (top). Agreement (Kendall’s T) between
rankings of algorithms (according to median across all
recordings) by different labelling metrics. All values of
7> 0.33 are plotted. Shaded backgrounds indicate sig-
nificance; bold values indicate strong agreements.
Figure 1b (above). Agreement in the ranking of re-
cordings by different labelling metrics.
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Figure 2a (top). Agreement in the ranking of algo-
rithms by different boundary metrics.

Figure 2b (above). Agreement in the ranking of re-
cordings by different boundary metrics.

3.2 Correlation with ground truth properties

The preceding analysis uses only the evaluation data,
not the additional ground truth information made avail-
able for the 2012 SS task. With the ground truth we can
push the correlation one step further and check whether
there are simple properties of the annotated and estimated
descriptions that strongly influence the evaluation met-
rics. For example, it could be that the algorithms simply
find longer songs to be more difficult to analyze.

We tested the correlation between all the preceding
metrics and the length of the recording (/en), as well as
ten other properties. Four are properties of the annotation:
number of segments (ns.), number of unique labels (n/,),
mean segment length (ms/,) and the number of segments
per label (nspl.). The next four are the same properties for
the estimated description (nse, nl., msl, nspl.). We also
take the number of extra segments estimated (nse—nsa) as
a “direct” over-segmentation measure for boundaries
(ob), and likewise the number of extra labels (nl—nl,) as
the over-segmentation measure for labels (o/).

The correlation between these properties reveals an
interesting mismatch between the algorithms and the an-
notations with regard to the mean segment length. In the
annotations, song length correlates significantly with
mean segment length (t = 0.37), but hardly at all with the
number of segments (0.22). The pattern is reversed

among the algorithm outputs, where song length barely
correlates with mean segment length (0.25) but strongly
with the number of segments (0.72). It appears that the
algorithms do not model how listeners tend to identify a
number of sections that is stable across most pieces:
while the middle half of the values of ns, ranges from 7
and 13 segments, the middle values for ns. for most algo-
rithms range from 11 to 20 segments. The two exceptions
are MHRAF and OYZS, for which both msl. and ns.
match the distributions seen in the annotations.

This shortcoming of the algorithms is reflected in the
strong dependence of boundary estimation metrics on the
mean segment length in the annotation (msl,): worse val-
ues of by, I-f and mc2t, all of which punish spurious
boundary estimation, are correlated with longer annotated
segments.

Figure 3 also shows that the label evaluation metrics
seem more sensitive to the number of unique labels in the
annotation (nl,). When nl, is high, so are asp and So
(these reflect over-segmentation errors, which are more
difficult to make with more fine-grained annotations),
while pw;, and acp are reduced, indicating a susceptibility
to under-segmentation errors. This dependence suggests
that algorithms have difficulty estimating the number of
unique segment types heard by a listener.

4. IDENTIFYING MIREX RECORDINGS

In the 2012 SS task, ground truth and the estimated
analysis of each algorithm were provided for each piece.
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Figure 3. Agreement in the ranking of recordings be-
tween metrics and properties of the annotated and es-
timated descriptions.



Since the ground truth collections used by MIREX are
publically available, we can try to identify the recordings
in the evaluation by matching the anonymized ground
truth published by MIREX with public ground truth.

Before we identify the recordings, we acknowledge
that there are advantages to keeping test data private: it is
difficult for the designers of algorithms to overfit to hid-
den data, which means the same data can be reused in
successive years; this is useful since ground truth is ex-
pensive to create. However, to learn from an evaluation
with private data would require the task moderators to
conduct meta-evaluation, which is also costly. Moreover,
for the SS task, most of the annotation data is already
public, and the Beatles and RWC datasets are already
widely distributed—indeed, RWC was designed in order
to be distributable at cost, without regard for copyright
issues. Hence the main advantages of private data do not
apply to this task.

The collections used in the SS task are summarized in
Table 2. We downloaded all the publicly available anno-
tations for these sources [21-26] to compile a grand pub-
lic corpus, as well as all MIREX output and annotation
for the SS task [27]. For every anonymous MIREX anno-
tation, we searched for public annotations where the
lengths of the pieces differed by less than 15 seconds, and
computed the boundary f~measure between them. If the
boundary f~measure exceeded 0.99, we assumed a match
was found. Checking many of the matches informally, it
was clear the match was correct.

The number of annotations in the four test collections
is provided in Table 1, as well as the number of pieces
that were positively matched with an existing annotation.
The greatest number of pieces missed were in the SA-
LAMI collection. This is to be expected since half of the
SALAMI data remains private.

Associating the MIREX results with actual recordings
allows us to search for possible commonalities between
the recordings that were “easiest” and “hardest” to anno-
tate. The piece with the highest median pwy is The Beat-
les’ “Her Majesty,” a 30-second song with just one sec-
tion. When a song has just one section, any algorithm is
guaranteed to get pairwise precision of 1, and the only
boundaries in the song are within 3 seconds of its begin-
ning and end, ensuring boundary recall of 1 as well. The
next-best Beatles song, “I Will”, is an instance where
both the states and sequences hypotheses apply well: the
repeating sections are relatively homogeneous, but con-
tain distinct harmonic sequences. Also, like “Her Maj-

MIREX Dataset con- Number | Number
dataset tents of pieces | of pieces
identified
mrx09 Beatles, Queen, 297 274
Michael Jackson
mrx10 1 | RWC Popular 100 100
mrx10 2 | RWC Popular 100 100
sal SALAMI 1000 674

Table 2. Summary of the annotations identified in each
corpus

esty,” the song is short and contains few sections, reduc-
ing the chance of under-segmentation.

On the opposite end, the worst overall performance in
the MIREX09 dataset is on songs by Queen and Michael
Jackson. At the bottom is Jackson’s “They Don’t Care
About Us”. The nine algorithms’ output for this song,
along with the ground truth and pwy scores, are shown in
Figure 4. This song is highly repetitive, especially har-
monically, although the sung portions are very distinct
from the instrumental sections: intro (before 0:42), outro
(after 3:50), and interlude (2:40 to 3:10). Most of the es-
timated descriptions discover this overall structure, but
fail to differentiate between the similar verses and cho-
ruses. Perhaps algorithms will need to employ more than
just harmonic features to improve performance on a case
like this.

On the other hand, the annotation also labels the end
of the song differently from the chorus, even though they
sound similar. That is, the annotation conflates musical
similarity with musical function, the situation discussed
by [13]. To improve performance, MIREX may wish to
update its ground truth to reflect primarily musical simi-
larity; or, algorithms should aim to characterize the se-
mantic labels usually ignored in an analysis.

Conspicuously, 17 of the easiest 20 songs (again, with
respect to pwy) are Beatles tunes, while only 2 of the most
difficult 20 songs are—the rest being Michael Jackson,
Queen and Carole King songs. Taking the median pwy
across the algorithms and comparing this value for the
274 annotations identified as one of these four artists, a
Kruskal-Wallis test confirms that the groups differ. A
multiple comparison test reveals that pwr is significantly
greater for the Beatles group than the three others. The
simplest explanation is that the songs by the other artists
are simply more challenging to analyze than the bulk of
the Beatles catalogue. However, this may be evidence
that the community is overlearning on the Beatles dataset,
which has been widely distributed and used as a test col-
lection for at least 6 years.

5. CONCLUSION

We revisited the 2012 MIREX Structure Segmentation
task to better understand the performance of the algo-
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Figure 4. Annotated ground truth and algorithm output
for “They Don’t Care About Us” by Michael Jackson.
The median pwy achieved by these algorithms was
among the lowest in all of MIREX 2012.



rithms and the behaviour of the evaluation metrics. Using
a correlation analysis, we identified the same metrics

excluded from MIREX as redundant (K, asp, acp) and
one as unstable and biased (R). Thanks to the release of
the ground truth and algorithm output with the 2012
MIREX SS task, we were able to investigate the relation-
ship between evaluation metrics and simple properties of
the annotated and estimated descriptions, identifying the
lack of regularity in the number of segments per song as a
hindrance to many submissions.

We hope that this investigation serves as a positive
example of the kind of learning that can be accomplished
through meta-analysis. Other MIREX tasks could benefit
from the release of algorithm output data and information
about the ground truth. While the MIR community must
weigh the value of open evaluations with the cost of new
datasets, note that it is not necessary to release all the
ground truth to benefit a meta-analysis: indeed, this
analysis focused mainly on non-identifying parameters of
the annotations (Section 3.2) and only a few high- and
low-performing songs.
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