Mercurial > hg > midi-score-follower
view hackday/BayesianArrayStructure.cpp @ 36:5a1b0c6fa1fb
Added class to read in the csv Annotation file, then write out the respective difference between the performed piece as followed here, and the annotation of RWC by Ewert and Muller
author | Andrew N Robertson <andrew.robertson@eecs.qmul.ac.uk> |
---|---|
date | Thu, 15 Dec 2011 02:28:49 +0000 |
parents | 9a70d9abdc8b |
children |
line wrap: on
line source
/* * BayesianArrayStructure.cpp * midiCannamReader * * Created by Andrew on 17/07/2011. * Copyright 2011 QMUL. All rights reserved. * */ //look at reset speed to one - what does this do? - get rid of? #include "BayesianArrayStructure.h" BayesianArrayStructure::BayesianArrayStructure(){ printf("Bayesian structure: DeFault constructor called"); usingIntegratedTempoEstimate = true;// use max index relativeSpeedLikelihoodStdDev = 5.0; prior.createVector(1); likelihood.createVector(1); posterior.createVector(1); speedPriorValue = 1.0; speedEstimate = speedPriorValue; lastEventTime = 0;//ofGetElapsedTimeMillis(); tmpBestEstimate = 0; crossUpdateTimeThreshold = 60; priorWidth = 50; } BayesianArrayStructure::BayesianArrayStructure(int length){ printf("BAYESIAN STURTUCRE CREATED LENGTH: %i\n", length); //this constructor isnt called it seems prior.createVector(length); likelihood.createVector(length); posterior.createVector(length); lastEventTime = 0; } void BayesianArrayStructure::resetSize(int length){ printf("BAYESIAN STRUCTURE size is : %i\n", length); prior.createVector(length); likelihood.createVector(length); posterior.createVector(length); acceleration.createVector(length); } void BayesianArrayStructure::resetSpeedToOne(){ relativeSpeedPrior.zero(); relativeSpeedPosterior.zero(); relativeSpeedLikelihood.zero(); relativeSpeedPosterior.addGaussianShape(100, 20, 0.8); relativeSpeedPosterior.renormalise(); relativeSpeedPosterior.getMaximum(); setSpeedPrior(speedPriorValue); speedEstimate = speedPriorValue; prior.zero(); posterior.zero(); posterior.addToIndex(0, 1); posterior.renormalise(); //acceleration.addGaussianShape(2000, 20, 0.8); } void BayesianArrayStructure::setSpeedPrior(double f){ speedPriorValue = f; int index = relativeSpeedPosterior.getRealTermsAsIndex(speedPriorValue); relativeSpeedPosterior.zero(); relativeSpeedPosterior.addGaussianShape(index, priorWidth, 0.8); relativeSpeedPosterior.renormalise(); relativeSpeedPosterior.getMaximum(); relativeSpeedPrior.copyFromDynamicVector(relativeSpeedPosterior); printf("BAYES STRUCTU ' SPEED PRIOR %f . index %i\n", speedPriorValue, index); } void BayesianArrayStructure::resetSpeedSize(int length){ printf("BAYESIAN SPEED size is : %i\n", length); relativeSpeedPrior.createVector(length); relativeSpeedLikelihood.createVector(length); relativeSpeedPosterior.createVector(length); tmpPosteriorForStorage.createVector(length); } void BayesianArrayStructure::setRelativeSpeedScalar(double f){ relativeSpeedPrior.scalar = f; relativeSpeedPosterior.scalar = f; relativeSpeedLikelihood.scalar = f; } void BayesianArrayStructure::setPositionDistributionScalar(double f){ if (f > 0){ prior.scalar = f; posterior.scalar = f; likelihood.scalar = f; } } void BayesianArrayStructure::simpleExample(){ relativeSpeedPosterior.getMaximum(); relativeSpeedPrior.copyFromDynamicVector(relativeSpeedPosterior); } void BayesianArrayStructure::copyPriorToPosterior(){ for (int i = 0;i < prior.arraySize;i++){ posterior.array[i] = prior.array[i]; } } void BayesianArrayStructure::setStartPlaying(){ lastEventTime = 0; bestEstimate = 0; lastBestEstimateUpdateTime = 0; if (*realTimeMode) lastBestEstimateUpdateTime = ofGetElapsedTimeMillis(); //cannot just be zero - offline bug printf("start playing - best estimate %f\n", lastBestEstimateUpdateTime); resetArrays(); } void BayesianArrayStructure::resetArrays(){ //called when we start playing prior.zero(); likelihood.zero(); posterior.zero(); updateCounter = 0; posterior.offset = -1000; setNewDistributionOffsets(0); int zeroIndex = posterior.getRealTermsAsIndex(0); posterior.addGaussianShape(zeroIndex, 500, 1); // posterior.addToIndex(0, 1); likelihood.addConstant(1); updateCounter = 0; printf("bayes reset arrays - best estimate %f\n", lastBestEstimateUpdateTime); setSpeedPrior(speedPriorValue); } void BayesianArrayStructure::zeroArrays(){ prior.zero(); likelihood.zero(); posterior.zero(); relativeSpeedPrior.zero(); relativeSpeedPosterior.zero(); relativeSpeedLikelihood.zero(); } void BayesianArrayStructure::updateTmpBestEstimate(const double& timeDifference){ //input is the time since the start of playing // double timeDiff = ofGetElapsedTimeMillis() - lastEventTime;//lastBestEstimateUpdateTime; tmpBestEstimate = posterior.getIndexInRealTerms(posterior.MAPestimate) + timeDifference*relativeSpeedPosterior.getIndexInRealTerms(relativeSpeedPosterior.integratedEstimate); // //printf("tmp best %f and best %f time diff %f posterior MAP %f at speed %f\n", tmpBestEstimate, bestEstimate, timeDifference, posterior.getIndexInRealTerms(posterior.MAPestimate), relativeSpeedPosterior.getIndexInRealTerms(relativeSpeedPosterior.integratedEstimate)); //lastBestEstimateUpdateTime = ofGetElapsedTimeMillis(); } void BayesianArrayStructure::updateBestEstimate(const double& timeDifference){ // double timeDiff = ofGetElapsedTimeMillis() - lastEventTime;// double timeDiff = timeDifference; //Using timedifferencfe here will make it go wrong. Is time since beginning of playing if (*realTimeMode) timeDiff = ofGetElapsedTimeMillis() - lastBestEstimateUpdateTime; double speedEstimate; if (usingIntegratedTempoEstimate) speedEstimate = relativeSpeedPosterior.getIntegratedEstimate(); else speedEstimate = relativeSpeedPosterior.MAPestimate; speedEstimate = relativeSpeedPosterior.getIndexInRealTerms(speedEstimate); //relativeSpeedPosterior.getIndexInRealTerms(relativeSpeedPosterior.MAPestimate) bestEstimate = posterior.getIndexInRealTerms(posterior.MAPestimate) + timeDiff*speedEstimate; // bestEstimate = tmpBestEstimate; } void BayesianArrayStructure::calculatePosterior(){ //posterior.doProduct(prior, likelihood); int i; for (i = 0;i < posterior.length;i++){ posterior.array[i] = likelihood.array[i] * prior.array[i]; } posterior.renormalise(); } void BayesianArrayStructure::setNewDistributionOffsets(const double& newOffset){ prior.offset = newOffset; likelihood.offset = newOffset; //posterior.offset = newOffset; } void BayesianArrayStructure::crossUpdateArrays(DynamicVector& position, DynamicVector& speed, double timeDifference){ //set the cutoff for offset of position first! XXX // printf("time difference %f, ", timeDifference); double timeDifferenceInPositionVectorUnits = timeDifference / prior.scalar; prior.zero();//kill prior calculateNewPriorOffset(timeDifference);//set new prior offset here if (timeDifferenceInPositionVectorUnits > crossUpdateTimeThreshold) complexCrossUpdate(timeDifferenceInPositionVectorUnits); else translateByMaximumSpeed(timeDifferenceInPositionVectorUnits); updateCounter++; prior.renormalise(); } void BayesianArrayStructure::complexCrossUpdate(const double& timeDifferenceInPositionVectorUnits){ int distanceMoved, newPriorIndex; double speedValue = relativeSpeedPosterior.offset; for (int i = 0;i < relativeSpeedPosterior.arraySize;i++){ // double speedValue = relativeSpeedPosterior.getIndexInRealTerms(i);//so for scalar 0.01, 50 -> speed value of 0.5 //so we have moved distanceMoved = round(timeDifferenceInPositionVectorUnits * speedValue);//round the value if (relativeSpeedPosterior.array[i] != 0){ double speedContribution = relativeSpeedPosterior.array[i]; // printf("speed [%i] gives %f moved %i in %f units \n", i, speedValue, distanceMoved, timeDifferenceInPositionVectorUnits); newPriorIndex = posterior.offset - prior.offset + distanceMoved; for (int postIndex = 0;postIndex < posterior.arraySize;postIndex++){ //old posterior contributing to new prior // newPriorIndex = postIndex + posterior.offset - prior.offset + distanceMoved; if (newPriorIndex >= 0 && newPriorIndex < prior.arraySize){ prior.addToIndex(newPriorIndex, posterior.array[postIndex]*speedContribution); } newPriorIndex++;//optimised code - the commented line above explains how this works }//end for }//if not zero speedValue += relativeSpeedPosterior.scalar; //optimised line //as we wanted: // double speedValue = relativeSpeedPosterior.getIndexInRealTerms(i);//so for scalar 0.01, 50 -> speed value of 0.5 }//end speed } void BayesianArrayStructure::translateByMaximumSpeed(const double& timeDifferenceInPositionVectorUnits){ int distanceMoved, newPriorIndex; double speedValue = relativeSpeedPosterior.getIndexInRealTerms(relativeSpeedPosterior.integratedEstimate); //so for scalar 0.01, 50 -> speed value of 0.5 double speedContribution = relativeSpeedPosterior.array[relativeSpeedPosterior.integratedEstimate]; //so we have moved distanceMoved = round(timeDifferenceInPositionVectorUnits * speedValue);//round the value // printf("speed [%i] gives %f moved %i in %f units \n", i, speedValue, distanceMoved, timeDifferenceInPositionVectorUnits); for (int postIndex = 0;postIndex < posterior.arraySize;postIndex++){ //old posterior contributing to new prior newPriorIndex = postIndex + posterior.offset - prior.offset + distanceMoved; if (newPriorIndex >= 0 && newPriorIndex < prior.arraySize){ prior.addToIndex(newPriorIndex, posterior.array[postIndex]*speedContribution); } } } void BayesianArrayStructure::addGaussianNoiseToSpeedPosterior(const double& std_dev){ tmpPosteriorForStorage.copyFromDynamicVector(relativeSpeedPosterior); for (int i = 0;i < relativeSpeedPosterior.length;i++){ tmpPosteriorForStorage.addGaussianShape(i, std_dev, relativeSpeedPosterior.array[i]); } tmpPosteriorForStorage.renormalise(); relativeSpeedPosterior.copyFromDynamicVector(tmpPosteriorForStorage); } void BayesianArrayStructure::addTriangularNoiseToSpeedPosterior(const double& std_dev){ tmpPosteriorForStorage.copyFromDynamicVector(relativeSpeedPosterior); for (int i = 0;i < relativeSpeedPosterior.length;i++){ //adding a linear amount depending on distance tmpPosteriorForStorage.addTriangularShape(i, std_dev*2.0, relativeSpeedPosterior.array[i]); } tmpPosteriorForStorage.renormalise(); relativeSpeedPosterior.copyFromDynamicVector(tmpPosteriorForStorage); } void BayesianArrayStructure::calculateNewPriorOffset(const double& timeDifference){ double maxSpeed = relativeSpeedPosterior.getIndexInRealTerms(relativeSpeedPosterior.integratedEstimate); // printf("Maxspeed is %f\n", maxSpeed); double priorMax = posterior.getMaximum(); double distanceTravelled = maxSpeed * (timeDifference / prior.scalar); double newMaxLocation = posterior.MAPestimate + distanceTravelled; // printf("MAP: %i, tim df %f, distance %f, new location %f\n", posterior.MAPestimate, timeDifference, distanceTravelled, newMaxLocation); } void BayesianArrayStructure::decaySpeedDistribution(double timeDifference){ // commented for the moment double relativeAmount = max(1.0, timeDifference/1000.); // printf("decay %f around %i \n", timeDifference, relativeSpeedPosterior.MAPestimate); relativeAmount *= speedDecayAmount; relativeSpeedPosterior.renormalise(); relativeSpeedPosterior.addGaussianShape(relativeSpeedPosterior.MAPestimate, speedDecayWidth, relativeAmount); relativeSpeedPosterior.renormalise(); double newMax = relativeSpeedPosterior.getMaximum(); //old code // relativeSpeedPosterior.addGaussianShape(relativeSpeedPosterior.MAPestimate, speedDecayWidth, 10); //relativeSpeedPosterior.addConstant(1); /* relativeSpeedPrior.copyFromDynamicVector(relativeSpeedPosterior); relativeSpeedLikelihood.zero(); relativeSpeedLikelihood.addConstant(0.2); relativeSpeedLikelihood.addGaussianShape(relativeSpeedPosterior.maximumValue, speedDecayWidth, relativeAmount); relativeSpeedPosterior.doProduct(relativeSpeedPrior, relativeSpeedLikelihood); relativeSpeedPosterior.renormalise(); */ } void BayesianArrayStructure::setLikelihoodToConstant(){ //set new likelihood relativeSpeedLikelihood.zero(); relativeSpeedLikelihood.addConstant(speedLikelihoodNoise); } void BayesianArrayStructure::updateTempoLikelihood(const double& speedRatio, const double& matchFactor){ //speedratio is speed of played relative to the recording double index = relativeSpeedLikelihood.getRealTermsAsIndex(speedRatio); // printf("index of likelihood would be %f for ratio %f\n", index, speedRatio); if (index >= 0 && index < relativeSpeedPrior.length){ relativeSpeedLikelihood.addGaussianShape(index , relativeSpeedLikelihoodStdDev, matchFactor); } } void BayesianArrayStructure::updateTempoDistribution(){ //copy posterior to prior relativeSpeedPrior.copyFromDynamicVector(relativeSpeedPosterior); //update relativeSpeedPosterior.doProduct(relativeSpeedPrior, relativeSpeedLikelihood); //normalise relativeSpeedPosterior.renormalise(); relativeSpeedPosterior.getMaximum(); // relativeSpeedPosterior.updateIntegratedEstimate(); relativeSpeedPosterior.updateLimitedIntegratedEstimate(); speedEstimate = relativeSpeedPosterior.getIndexInRealTerms(relativeSpeedPosterior.integratedEstimate); } void BayesianArrayStructure::calculateTempoUpdate(){ //copy posterior to prior relativeSpeedPrior.copyFromDynamicVector(relativeSpeedPosterior); //update relativeSpeedPosterior.doProduct(relativeSpeedPrior, relativeSpeedLikelihood); //normalise relativeSpeedPosterior.renormalise(); relativeSpeedPosterior.getMaximum(); } void BayesianArrayStructure::drawArrays(){ //bayesArray.drawFloatArray(&bayesArray.prior[0], 0, 200); //bayesArray.drawFloatArray(&bayesArray.prior[0], 0, 200); int displaySize = prior.arraySize; ofSetColor(0,0,255); prior.drawVector(0, displaySize); ofSetColor(0,255,0); likelihood.drawVector(0, displaySize); ofSetColor(255,0,255); posterior.drawVector(0, displaySize); } void BayesianArrayStructure::drawTempoArrays(){ ofSetColor(0,0,255); // relativeSpeedPrior.drawVector(0, relativeSpeedPrior.arraySize); ofSetColor(0,150,255); relativeSpeedLikelihood.drawVector(0, relativeSpeedLikelihood.arraySize); // relativeSpeedLikelihood.drawConstrainedVector(0, 199, 0, 1000);// relativeSpeedLikelihood.arraySize); ofSetColor(255,0,0); relativeSpeedPosterior.drawVector(0, relativeSpeedPosterior.arraySize); // ofSetColor(0,0,255); // tmpPosteriorForStorage.drawVector(0, tmpPosteriorForStorage.arraySize); ofSetColor(255,255, 255); ofLine(screenWidth/2, 0, screenWidth/2, ofGetHeight());//middle of screen ofSetColor(25, 0, 250); double fractionOfScreen = ((double)relativeSpeedPosterior.integratedEstimate / relativeSpeedPosterior.length); ofLine(screenWidth * fractionOfScreen, 0, screenWidth * fractionOfScreen, ofGetHeight()); ofSetColor(255, 0, 20); fractionOfScreen = ((double)relativeSpeedPosterior.MAPestimate / relativeSpeedPosterior.length); ofLine(screenWidth * fractionOfScreen, 0, screenWidth * fractionOfScreen, ofGetHeight()); } void BayesianArrayStructure::drawArraysRelativeToTimeframe(const double& startTimeMillis, const double& endTimeMillis){ screenWidth = ofGetWidth(); int startArrayIndex = 0; if (prior.getIndexInRealTerms(prior.arraySize-1) > startTimeMillis){ //i.e. the array is on the page while (prior.getIndexInRealTerms(startArrayIndex) < startTimeMillis){ startArrayIndex++; } int endArrayIndex = prior.arraySize-1; //could find constraints here if (prior.getIndexInRealTerms(prior.arraySize-1) > endTimeMillis) endArrayIndex = (floor)((endTimeMillis - prior.offset)/prior.scalar); //so we need to figure where start and end array are on screen int startScreenPosition, endScreenPosition; double screenWidthMillis = endTimeMillis - startTimeMillis; startScreenPosition = (prior.getIndexInRealTerms(startArrayIndex) - startTimeMillis)*screenWidth/screenWidthMillis; endScreenPosition = (double)(prior.getIndexInRealTerms(endArrayIndex) - startTimeMillis)*screenWidth/screenWidthMillis; ofSetColor(0,0,100); string relativeString = " offset "+ofToString(prior.offset, 1);//starttimes("+ofToString(startTimeMillis)+", "+ofToString(endTimeMillis); relativeString += ": index "+ofToString(startArrayIndex)+" , "+ofToString(endArrayIndex)+" ["; // relativeString += ofToString(prior.getIndexInRealTerms(endArrayIndex), 3)+"] (sc-width:"+ofToString(screenWidthMillis, 1)+") "; relativeString += " mapped to screen "+ofToString(startScreenPosition)+" , "+ofToString(endScreenPosition); // ofDrawBitmapString(relativeString, 100, 180); ofSetColor(100,100,100);//255, 255, 0); likelihood.drawConstrainedVector(startArrayIndex, endArrayIndex, startScreenPosition, endScreenPosition); // ofSetColor(0,0,200); ofSetColor(170,170,170);//00,200); prior.drawConstrainedVector(startArrayIndex, endArrayIndex, startScreenPosition, endScreenPosition); ofSetColor(0,0,150); // ofSetColor(200, 0, 0); posterior.drawConstrainedVector(startArrayIndex, endArrayIndex, startScreenPosition, endScreenPosition); // ofSetColor(0, 200, 255); // acceleration.drawConstrainedVector(startArrayIndex, endArrayIndex, startScreenPosition, endScreenPosition); } } /* void BayesianArrayStructure::updateTempoDistribution(const double& speedRatio, const double& matchFactor){ //speedratio is speed of played relative to the recording double index = relativeSpeedLikelihood.getRealTermsAsIndex(speedRatio); // printf("\nindex of likelihood would be %f\n", index); if (index >= 0 && index < relativeSpeedPrior.length){ //then we can do update //set new likelihood relativeSpeedLikelihood.zero(); relativeSpeedLikelihood.addConstant(speedLikelihoodNoise); relativeSpeedLikelihood.addGaussianShape(index , 5, 0.5*matchFactor); //copy posterior to prior relativeSpeedPrior.copyFromDynamicVector(relativeSpeedPosterior); //update relativeSpeedPosterior.doProduct(relativeSpeedPrior, relativeSpeedLikelihood); //normalise relativeSpeedPosterior.renormalise(); relativeSpeedPosterior.getMaximum(); }//end if within range } */