Mercurial > hg > may
view yetilab/matrix/matrix.yeti @ 238:0c86d9284f20 sparse
Implement sparse matrix construction, add tests for sparse matrices (currently failing)
author | Chris Cannam |
---|---|
date | Mon, 20 May 2013 14:18:14 +0100 |
parents | 601dbfcf949d |
children | 741784624bb6 |
line wrap: on
line source
module yetilab.matrix.matrix; // A matrix is an array of vectors. // A matrix can be stored in either column-major (the default) or // row-major format. Storage order is an efficiency concern only: // every API function operating on matrix objects will return the same // result regardless of storage order. (The transpose function just // switches the row/column order without moving the elements.) //!!! check that we are not unnecessarily copying in the transform functions vec = load yetilab.vector.vector; bf = load yetilab.vector.blockfuncs; load yetilab.vector.vectortype; load yetilab.matrix.matrixtype; size m = case m of DenseRows r: major = length r; { rows = major, columns = if major > 0 then vec.length r[0] else 0 fi, }; DenseCols c: major = length c; { rows = if major > 0 then vec.length c[0] else 0 fi, columns = major, }; SparseCSR { values, indices, pointers, extent }: { rows = (length pointers) - 1, columns = extent }; SparseCSC { values, indices, pointers, extent }: { rows = extent, columns = (length pointers) - 1 }; esac; width m = (size m).columns; height m = (size m).rows; sparseSlice n d = (start = d.pointers[n]; end = d.pointers[n+1]; { values = vec.slice d.values start end, indices = slice d.indices start d.pointers[n+1], }); fromSlice n m d = (slice = sparseSlice n d; var v = 0; for [0..length slice.indices - 1] do i: if slice.indices[i] == m then v := vec.at i slice.values; fi done; v); filledSlice n d = (slice = sparseSlice n d; dslice = new double[d.extent]; \() (map2 do v i: dslice[i] := v done (vec.list slice.values) (list slice.indices)); vec.vector dslice); getAt row col m = case m of DenseRows rows: r = rows[row]; vec.at col r; DenseCols cols: c = cols[col]; vec.at row c; SparseCSR data: fromSlice row col data; SparseCSC data: fromSlice col row data; esac; getColumn j m = case m of DenseCols cols: cols[j]; SparseCSC data: filledSlice j data; _: vec.fromList (map do i: getAt i j m done [0..height m - 1]); esac; getRow i m = case m of DenseRows rows: rows[i]; SparseCSR data: filledSlice i data; _: vec.fromList (map do j: getAt i j m done [0..width m - 1]); esac; isRowMajor? m = case m of DenseRows _: true; DenseCols _: false; SparseCSR _: true; SparseCSC _: false; esac; isSparse? m = case m of DenseRows _: false; DenseCols _: false; SparseCSR _: true; SparseCSC _: true; esac; newColMajorStorage { rows, columns } = if rows < 1 then array [] else array (map \(vec.zeros rows) [1..columns]) fi; zeroMatrix { rows, columns } = DenseCols (newColMajorStorage { rows, columns }); zeroMatrixWithTypeOf m { rows, columns } = if isRowMajor? m then DenseRows (newColMajorStorage { rows = columns, columns = rows }); else DenseCols (newColMajorStorage { rows, columns }); fi; zeroSizeMatrix () = zeroMatrix { rows = 0, columns = 0 }; generate f { rows, columns } = if rows < 1 or columns < 1 then zeroSizeMatrix () else m = array (map \(new double[rows]) [1..columns]); for [0..columns-1] do col: for [0..rows-1] do row: m[col][row] := f row col; done; done; DenseCols (array (map vec.vector m)) fi; enumerateSparse m = (enumerate vv ix ptr jn n = case vv of v::rest: { v, i = ix[n], j = jn } :. if n + 1 >= head ptr then \(enumerate rest ix (tail ptr) (jn + 1) (n + 1)) else \(enumerate rest ix ptr jn (n + 1)) fi; _: []; esac; case m of SparseCSC { values, indices, pointers, extent }: enumerate (vec.list values) indices (list pointers) 0 0; SparseCSR { values, indices, pointers, extent }: map do { i, j, v }: { i = j, j = i, v } done (enumerate (vec.list values) indices (list pointers) 0 0); _: []; esac); makeSparse type size data = (isRow = case type of RowMajor (): true; ColMajor (): false esac; ordered = sortBy do a b: if a.maj == b.maj then a.min < b.min else a.maj < b.maj fi done (map if isRow then do { i, j, v }: { maj = i, min = j, v } done; else do { i, j, v }: { maj = j, min = i, v } done; fi data); tagger = if isRow then SparseCSR else SparseCSC fi; majorSize = if isRow then size.rows else size.columns fi; minorSize = if isRow then size.columns else size.rows fi; majorPointers acc nn n i data = if n < nn then case data of d::rest: majorPointers (acc ++ (map \(i) [n..d-1])) nn d (i+1) rest; _: majorPointers (acc ++ [i]) nn (n+1) i []; esac; else acc fi; tagger { values = vec.fromList (map (.v) ordered), indices = array (map (.min) ordered), pointers = array (majorPointers [] majorSize 0 0 (map (.maj) ordered)), extent = minorSize, }); toSparse threshold m = if isSparse? m then m else { rows, columns } = size m; enumerate threshold m ii jj = case ii of i::irest: case jj of j::rest: v = getAt i j m; if abs v > threshold then { i, j, v } :. \(enumerate threshold m ii rest) else enumerate threshold m ii rest fi; _: enumerate threshold m irest [0..columns-1]; esac; _: []; esac; makeSparse if isRowMajor? m then RowMajor () else ColMajor () fi (size m) (enumerate threshold m [0..rows-1] [0..columns-1]); fi; toDense m = if not (isSparse? m) then m elif isRowMajor? m then DenseRows (array (map do row: getRow row m done [0..height m - 1])); else DenseCols (array (map do col: getColumn col m done [0..width m - 1])); fi; constMatrix n = generate do row col: n done; randomMatrix = generate do row col: Math#random() done; identityMatrix = constMatrix 1; transposed m = case m of DenseRows d: DenseCols d; DenseCols d: DenseRows d; SparseCSR d: SparseCSC d; SparseCSC d: SparseCSR d; esac; flipped m = if isSparse? m then if isRowMajor? m then makeSparse (ColMajor ()) (size m) (enumerateSparse m) else makeSparse (RowMajor ()) (size m) (enumerateSparse m) fi else if isRowMajor? m then generate do row col: getAt row col m done (size m); else transposed (generate do row col: getAt col row m done { rows = (width m), columns = (height m) }); fi fi; toRowMajor m = if isRowMajor? m then m else flipped m fi; toColumnMajor m = if not isRowMajor? m then m else flipped m fi; equal'' comparator vecComparator m1 m2 = // Prerequisite: m1 and m2 have same sparse-p and storage order (compareLists l1 l2 = all id (map2 comparator l1 l2); compareVecLists vv1 vv2 = all id (map2 vecComparator vv1 vv2); compareSparse d1 d2 = d1.extent == d2.extent and vecComparator d1.values d2.values and compareLists d1.indices d2.indices and compareLists d1.pointers d2.pointers; case m1 of DenseRows d1: case m2 of DenseRows d2: compareVecLists d1 d2; _: false; esac; DenseCols d1: case m2 of DenseCols d2: compareVecLists d1 d2; _: false; esac; SparseCSR d1: case m2 of SparseCSR d2: compareSparse d1 d2; _: false; esac; SparseCSC d1: case m2 of SparseCSC d2: compareSparse d1 d2; _: false; esac; esac); equal' comparator vecComparator m1 m2 = if size m1 != size m2 then false elif isRowMajor? m1 != isRowMajor? m2 then equal' comparator vecComparator (flipped m1) m2; elif isSparse? m1 != isSparse? m2 then if isSparse? m1 then equal' comparator vecComparator m1 (toSparse 0 m2) else equal' comparator vecComparator (toSparse 0 m1) m2 fi else equal'' comparator vecComparator m1 m2 fi; // Compare matrices using the given comparator for individual cells. // Note that matrices with different storage order but the same // contents are equal, although comparing them is slow. equalUnder comparator = equal' comparator (vec.equalUnder comparator); equal = equal' (==) vec.equal; newMatrix type data = //!!! NB does not copy data (tagger = case type of RowMajor (): DenseRows; ColumnMajor (): DenseCols esac; if empty? data or vec.empty? (head data) then zeroSizeMatrix () else tagger (array data) fi); newRowVector data = //!!! NB does not copy data DenseRows (array [data]); newColumnVector data = //!!! NB does not copy data DenseCols (array [data]); scaled factor m = //!!! v inefficient generate do row col: factor * (getAt row col m) done (size m); sum' m1 m2 = if (size m1) != (size m2) then failWith "Matrices are not the same size: \(size m1), \(size m2)"; else generate do row col: getAt row col m1 + getAt row col m2 done (size m1); fi; difference m1 m2 = //!!! doc: m1 - m2, not m2 - m1 if (size m1) != (size m2) then failWith "Matrices are not the same size: \(size m1), \(size m2)"; else generate do row col: getAt row col m1 - getAt row col m2 done (size m1); fi; abs' m = generate do row col: abs (getAt row col m) done (size m); product m1 m2 = if (size m1).columns != (size m2).rows then failWith "Matrix dimensions incompatible: \(size m1), \(size m2) (\((size m1).columns != (size m2).rows)"; else generate do row col: bf.sum (bf.multiply (getRow row m1) (getColumn col m2)) done { rows = (size m1).rows, columns = (size m2).columns } fi; asRows m = map do i: getRow i m done [0 .. (height m) - 1]; asColumns m = map do i: getColumn i m done [0 .. (width m) - 1]; concatAgainstGrain tagger getter counter mm = (n = counter (size (head mm)); tagger (array (map do i: vec.concat (map (getter i) mm) done [0..n-1]))); concatWithGrain tagger getter counter mm = tagger (array (concat (map do m: n = counter (size m); map do i: getter i m done [0..n-1] done mm))); checkDimensionsFor direction first mm = (counter = if direction == Horizontal () then (.rows) else (.columns) fi; n = counter (size first); if not (all id (map do m: counter (size m) == n done mm)) then failWith "Matrix dimensions incompatible for concat (found \(map do m: counter (size m) done mm) not all of which are \(n))"; fi); concat direction mm = //!!! doc: storage order is taken from first matrix in sequence //!!! would this be better as separate concatHorizontal/concatVertical functions? case mm of first::rest: checkDimensionsFor direction first mm; row = isRowMajor? first; // horizontal, row-major: against grain with rows // horizontal, col-major: with grain with cols // vertical, row-major: with grain with rows // vertical, col-major: against grain with cols case direction of Horizontal (): if row then concatAgainstGrain DenseRows getRow (.rows) mm; else concatWithGrain DenseCols getColumn (.columns) mm; fi; Vertical (): if row then concatWithGrain DenseRows getRow (.rows) mm; else concatAgainstGrain DenseCols getColumn (.columns) mm; fi; esac; [single]: single; _: zeroSizeMatrix (); esac; rowSlice start count m = //!!! doc: storage order same as input if isRowMajor? m then DenseRows (array (map ((flip getRow) m) [start .. start + count - 1])) else DenseCols (array (map (vec.rangeOf start count) (asColumns m))) fi; columnSlice start count m = //!!! doc: storage order same as input if not isRowMajor? m then DenseCols (array (map ((flip getColumn) m) [start .. start + count - 1])) else DenseRows (array (map (vec.rangeOf start count) (asRows m))) fi; resizedTo newsize m = (if newsize == (size m) then m elif (height m) == 0 or (width m) == 0 then zeroMatrixWithTypeOf m newsize; else growrows = newsize.rows - (height m); growcols = newsize.columns - (width m); rowm = isRowMajor? m; resizedTo newsize if rowm and growrows < 0 then rowSlice 0 newsize.rows m elif (not rowm) and growcols < 0 then columnSlice 0 newsize.columns m elif growrows < 0 then rowSlice 0 newsize.rows m elif growcols < 0 then columnSlice 0 newsize.columns m else if growrows > 0 then concat (Vertical ()) [m, zeroMatrixWithTypeOf m ((size m) with { rows = growrows })] else concat (Horizontal ()) [m, zeroMatrixWithTypeOf m ((size m) with { columns = growcols })] fi fi fi); { size, width, height, getAt, getColumn, getRow, isRowMajor?, isSparse?, generate, constMatrix, randomMatrix, zeroMatrix, identityMatrix, zeroSizeMatrix, equal, equalUnder, transposed, flipped, toRowMajor, toColumnMajor, toSparse, toDense, scaled, resizedTo, asRows, asColumns, sum = sum', difference, abs = abs', product, concat, rowSlice, columnSlice, newMatrix, newRowVector, newColumnVector, } as { //!!! check whether these are right to be .selector rather than just selector size is matrix -> { .rows is number, .columns is number }, width is matrix -> number, height is matrix -> number, getAt is number -> number -> matrix -> number, getColumn is number -> matrix -> vector, getRow is number -> matrix -> vector, isRowMajor? is matrix -> boolean, isSparse? is matrix -> boolean, generate is (number -> number -> number) -> { .rows is number, .columns is number } -> matrix, constMatrix is number -> { .rows is number, .columns is number } -> matrix, randomMatrix is { .rows is number, .columns is number } -> matrix, zeroMatrix is { .rows is number, .columns is number } -> matrix, identityMatrix is { .rows is number, .columns is number } -> matrix, zeroSizeMatrix is () -> matrix, equal is matrix -> matrix -> boolean, equalUnder is (number -> number -> boolean) -> matrix -> matrix -> boolean, transposed is matrix -> matrix, flipped is matrix -> matrix, toRowMajor is matrix -> matrix, toColumnMajor is matrix -> matrix, toSparse is number -> matrix -> matrix, toDense is matrix -> matrix, scaled is number -> matrix -> matrix, resizedTo is { .rows is number, .columns is number } -> matrix -> matrix, asRows is matrix -> list<vector>, asColumns is matrix -> list<vector>, sum is matrix -> matrix -> matrix, difference is matrix -> matrix -> matrix, abs is matrix -> matrix, product is matrix -> matrix -> matrix, concat is (Horizontal () | Vertical ()) -> list<matrix> -> matrix, rowSlice is number -> number -> matrix -> matrix, columnSlice is number -> number -> matrix -> matrix, newMatrix is (ColumnMajor () | RowMajor ()) -> list<vector> -> matrix, newRowVector is vector -> matrix, newColumnVector is vector -> matrix, }