matthiasm@8: % PLOTCOV2 - Plots a covariance ellipsoid with axes for a bivariate matthiasm@8: % Gaussian distribution. matthiasm@8: % matthiasm@8: % Usage: matthiasm@8: % [h, s] = plotcov2(mu, Sigma[, OPTIONS]); matthiasm@8: % matthiasm@8: % Inputs: matthiasm@8: % mu - a 2 x 1 vector giving the mean of the distribution. matthiasm@8: % Sigma - a 2 x 2 symmetric positive semi-definite matrix giving matthiasm@8: % the covariance of the distribution (or the zero matrix). matthiasm@8: % matthiasm@8: % Options: matthiasm@8: % 'conf' - a scalar between 0 and 1 giving the confidence matthiasm@8: % interval (i.e., the fraction of probability mass to matthiasm@8: % be enclosed by the ellipse); default is 0.9. matthiasm@8: % 'num-pts' - if the value supplied is n, then (n + 1)^2 points matthiasm@8: % to be used to plot the ellipse; default is 20. matthiasm@8: % 'label' - if non-empty, a string that will label the matthiasm@8: % ellipsoid (default: []) matthiasm@8: % 'plot-axes' - a 0/1 flag indicating if the ellipsoid's axes matthiasm@8: % should be plotted (default: 1) matthiasm@8: % 'plot-opts' - a cell vector of arguments to be handed to PLOT3 matthiasm@8: % to contol the appearance of the axes, e.g., matthiasm@8: % {'Color', 'g', 'LineWidth', 1}; the default is {} matthiasm@8: % 'fill-color' - a color specifier; is this is not [], the matthiasm@8: % covariance ellipse is filled with this color matthiasm@8: % (default: []) matthiasm@8: % matthiasm@8: % Outputs: matthiasm@8: % h - a vector of handles on the axis lines matthiasm@8: % matthiasm@8: % See also: PLOTCOV3 matthiasm@8: matthiasm@8: % Copyright (C) 2002 Mark A. Paskin matthiasm@8: % matthiasm@8: % This program is free software; you can redistribute it and/or modify matthiasm@8: % it under the terms of the GNU General Public License as published by matthiasm@8: % the Free Software Foundation; either version 2 of the License, or matthiasm@8: % (at your option) any later version. matthiasm@8: % matthiasm@8: % This program is distributed in the hope that it will be useful, but matthiasm@8: % WITHOUT ANY WARRANTY; without even the implied warranty of matthiasm@8: % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU matthiasm@8: % General Public License for more details. matthiasm@8: % matthiasm@8: % You should have received a copy of the GNU General Public License matthiasm@8: % along with this program; if not, write to the Free Software matthiasm@8: % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 matthiasm@8: % USA. matthiasm@8: %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% matthiasm@8: matthiasm@8: function [h, s] = plotcov2New(mu, Sigma, varargin) matthiasm@8: matthiasm@8: h = []; matthiasm@8: s = []; matthiasm@8: matthiasm@8: if size(Sigma) ~= [2 2], error('Sigma must be a 2 by 2 matrix'); end matthiasm@8: if length(mu) ~= 2, error('mu must be a 2 by 1 vector'); end matthiasm@8: matthiasm@8: Sigma = checkpsd(Sigma); matthiasm@8: matthiasm@8: [p, ... matthiasm@8: n, ... matthiasm@8: label, ... matthiasm@8: plot_axes, ... matthiasm@8: plot_opts, ... matthiasm@8: fill_color] = process_options(varargin, 'conf', 0.9, ... matthiasm@8: 'num-pts', 20, ... matthiasm@8: 'label', [], ... matthiasm@8: 'plot-axes', 1, ... matthiasm@8: 'plot-opts', {}, ... matthiasm@8: 'fill-color', []); matthiasm@8: holding = ishold; matthiasm@8: % Compute the Mahalanobis radius of the ellipsoid that encloses matthiasm@8: % the desired probability mass. matthiasm@8: k = conf2mahal(p, 2); matthiasm@8: % Scale the covariance matrix so the confidence region has unit matthiasm@8: % Mahalanobis distance. matthiasm@8: Sigma = Sigma * k; matthiasm@8: % The axes of the covariance ellipse are given by the eigenvectors of matthiasm@8: % the covariance matrix. Their lengths (for the ellipse with unit matthiasm@8: % Mahalanobis radius) are given by the square roots of the matthiasm@8: % corresponding eigenvalues. matthiasm@8: [V, D] = eig(full(Sigma)); matthiasm@8: V = real(V); matthiasm@8: D = real(D); matthiasm@8: D = abs(D); matthiasm@8: matthiasm@8: % Compute the points on the boundary of the ellipsoid. matthiasm@8: t = linspace(0, 2*pi, n); matthiasm@8: u = [cos(t(:))'; sin(t(:))']; matthiasm@8: w = (V * sqrt(D)) * u; matthiasm@8: z = repmat(mu(:), [1 n]) + w; matthiasm@8: h = [h; plot(z(1, :), z(2, :), plot_opts{:})]; matthiasm@8: if (~isempty(fill_color)) matthiasm@8: s = patch(z(1, :), z(2, :), fill_color); matthiasm@8: end matthiasm@8: matthiasm@8: % Plot the axes. matthiasm@8: if (plot_axes) matthiasm@8: hold on; matthiasm@8: L = sqrt(diag(D)); matthiasm@8: h = plot([mu(1); mu(1) + L(1) * V(1, 1)], ... matthiasm@8: [mu(2); mu(2) + L(1) * V(2, 1)], plot_opts{:}); matthiasm@8: h = [h; plot([mu(1); mu(1) + L(2) * V(1, 2)], ... matthiasm@8: [mu(2); mu(2) + L(2) * V(2, 2)], plot_opts{:})]; matthiasm@8: end matthiasm@8: matthiasm@8: matthiasm@8: if (~isempty(label)) matthiasm@8: th = text(mu(1), mu(2), label); matthiasm@8: set(th, 'FontSize', 18); matthiasm@8: set(th, 'FontName', 'Times'); matthiasm@8: set(th, 'FontWeight', 'bold'); matthiasm@8: set(th, 'FontAngle', 'italic'); matthiasm@8: set(th, 'HorizontalAlignment', 'center'); matthiasm@8: end matthiasm@8: matthiasm@8: if (~holding & plot_axes) hold off; end