matthiasm@8: function pi = mc_stat_distrib(P) matthiasm@8: % MC_STAT_DISTRIB Compute stationary distribution of a Markov chain matthiasm@8: % function pi = mc_stat_distrib(P) matthiasm@8: % matthiasm@8: % Each row of P should sum to one; pi is a column vector matthiasm@8: matthiasm@8: % Kevin Murphy, 16 Feb 2003 matthiasm@8: matthiasm@8: % The stationary distribution pi satisfies pi P = pi matthiasm@8: % subject to sum_i pi(i) = 1, 0 <= pi(i) <= 1 matthiasm@8: % Hence matthiasm@8: % (P' 0n (pi = (pi matthiasm@8: % 1n 0) 1) 1) matthiasm@8: % or P2 pi2 = pi2. matthiasm@8: % Naively we can solve this using (P2 - I(n+1)) pi2 = 0(n+1) matthiasm@8: % or P3 pi2 = 0(n+1), i.e., pi2 = P3 \ zeros(n+1,1) matthiasm@8: % but this is singular (because of the sum-to-one constraint). matthiasm@8: % Hence we replace the last row of P' with 1s instead of appending ones to create P2, matthiasm@8: % and similarly for pi. matthiasm@8: matthiasm@8: n = length(P); matthiasm@8: P4 = P'-eye(n); matthiasm@8: P4(end,:) = 1; matthiasm@8: pi = P4 \ [zeros(n-1,1);1]; matthiasm@8: matthiasm@8: