annotate _FullBNT/KPMtools/plotcov3.m @ 9:4ea6619cb3f5 tip

removed log files
author matthiasm
date Fri, 11 Apr 2014 15:55:11 +0100
parents b5b38998ef3b
children
rev   line source
matthiasm@8 1 % PLOTCOV3 - Plots a covariance ellipsoid with axes for a trivariate
matthiasm@8 2 % Gaussian distribution.
matthiasm@8 3 %
matthiasm@8 4 % Usage:
matthiasm@8 5 % [h, s] = plotcov3(mu, Sigma[, OPTIONS]);
matthiasm@8 6 %
matthiasm@8 7 % Inputs:
matthiasm@8 8 % mu - a 3 x 1 vector giving the mean of the distribution.
matthiasm@8 9 % Sigma - a 3 x 3 symmetric positive semi-definite matrix giving
matthiasm@8 10 % the covariance of the distribution (or the zero matrix).
matthiasm@8 11 %
matthiasm@8 12 % Options:
matthiasm@8 13 % 'conf' - a scalar between 0 and 1 giving the confidence
matthiasm@8 14 % interval (i.e., the fraction of probability mass to
matthiasm@8 15 % be enclosed by the ellipse); default is 0.9.
matthiasm@8 16 % 'num-pts' - if the value supplied is n, then (n + 1)^2 points
matthiasm@8 17 % to be used to plot the ellipse; default is 20.
matthiasm@8 18 % 'plot-opts' - a cell vector of arguments to be handed to PLOT3
matthiasm@8 19 % to contol the appearance of the axes, e.g.,
matthiasm@8 20 % {'Color', 'g', 'LineWidth', 1}; the default is {}
matthiasm@8 21 % 'surf-opts' - a cell vector of arguments to be handed to SURF
matthiasm@8 22 % to contol the appearance of the ellipsoid
matthiasm@8 23 % surface; a nice possibility that yields
matthiasm@8 24 % transparency is: {'EdgeAlpha', 0, 'FaceAlpha',
matthiasm@8 25 % 0.1, 'FaceColor', 'g'}; the default is {}
matthiasm@8 26 %
matthiasm@8 27 % Outputs:
matthiasm@8 28 % h - a vector of handles on the axis lines
matthiasm@8 29 % s - a handle on the ellipsoid surface object
matthiasm@8 30 %
matthiasm@8 31 % See also: PLOTCOV2
matthiasm@8 32
matthiasm@8 33 % Copyright (C) 2002 Mark A. Paskin
matthiasm@8 34 %
matthiasm@8 35 % This program is free software; you can redistribute it and/or modify
matthiasm@8 36 % it under the terms of the GNU General Public License as published by
matthiasm@8 37 % the Free Software Foundation; either version 2 of the License, or
matthiasm@8 38 % (at your option) any later version.
matthiasm@8 39 %
matthiasm@8 40 % This program is distributed in the hope that it will be useful, but
matthiasm@8 41 % WITHOUT ANY WARRANTY; without even the implied warranty of
matthiasm@8 42 % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
matthiasm@8 43 % General Public License for more details.
matthiasm@8 44 %
matthiasm@8 45 % You should have received a copy of the GNU General Public License
matthiasm@8 46 % along with this program; if not, write to the Free Software
matthiasm@8 47 % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
matthiasm@8 48 % USA.
matthiasm@8 49 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
matthiasm@8 50
matthiasm@8 51 function [h, s] = plotcov3(mu, Sigma, varargin)
matthiasm@8 52
matthiasm@8 53 if size(Sigma) ~= [3 3], error('Sigma must be a 3 by 3 matrix'); end
matthiasm@8 54 if length(mu) ~= 3, error('mu must be a 3 by 1 vector'); end
matthiasm@8 55
matthiasm@8 56 [p, ...
matthiasm@8 57 n, ...
matthiasm@8 58 plot_opts, ...
matthiasm@8 59 surf_opts] = process_options(varargin, 'conf', 0.9, ...
matthiasm@8 60 'num-pts', 20, ...
matthiasm@8 61 'plot-opts', {}, ...
matthiasm@8 62 'surf-opts', {});
matthiasm@8 63 h = [];
matthiasm@8 64 holding = ishold;
matthiasm@8 65 if (Sigma == zeros(3, 3))
matthiasm@8 66 z = mu;
matthiasm@8 67 else
matthiasm@8 68 % Compute the Mahalanobis radius of the ellipsoid that encloses
matthiasm@8 69 % the desired probability mass.
matthiasm@8 70 k = conf2mahal(p, 3);
matthiasm@8 71 % The axes of the covariance ellipse are given by the eigenvectors of
matthiasm@8 72 % the covariance matrix. Their lengths (for the ellipse with unit
matthiasm@8 73 % Mahalanobis radius) are given by the square roots of the
matthiasm@8 74 % corresponding eigenvalues.
matthiasm@8 75 if (issparse(Sigma))
matthiasm@8 76 [V, D] = eigs(Sigma);
matthiasm@8 77 else
matthiasm@8 78 [V, D] = eig(Sigma);
matthiasm@8 79 end
matthiasm@8 80 if (any(diag(D) < 0))
matthiasm@8 81 error('Invalid covariance matrix: not positive semi-definite.');
matthiasm@8 82 end
matthiasm@8 83 % Compute the points on the surface of the ellipsoid.
matthiasm@8 84 t = linspace(0, 2*pi, n);
matthiasm@8 85 [X, Y, Z] = sphere(n);
matthiasm@8 86 u = [X(:)'; Y(:)'; Z(:)'];
matthiasm@8 87 w = (k * V * sqrt(D)) * u;
matthiasm@8 88 z = repmat(mu(:), [1 (n + 1)^2]) + w;
matthiasm@8 89
matthiasm@8 90 % Plot the axes.
matthiasm@8 91 L = k * sqrt(diag(D));
matthiasm@8 92 h = plot3([mu(1); mu(1) + L(1) * V(1, 1)], ...
matthiasm@8 93 [mu(2); mu(2) + L(1) * V(2, 1)], ...
matthiasm@8 94 [mu(3); mu(3) + L(1) * V(3, 1)], plot_opts{:});
matthiasm@8 95 hold on;
matthiasm@8 96 h = [h; plot3([mu(1); mu(1) + L(2) * V(1, 2)], ...
matthiasm@8 97 [mu(2); mu(2) + L(2) * V(2, 2)], ...
matthiasm@8 98 [mu(3); mu(3) + L(2) * V(3, 2)], plot_opts{:})];
matthiasm@8 99 h = [h; plot3([mu(1); mu(1) + L(3) * V(1, 3)], ...
matthiasm@8 100 [mu(2); mu(2) + L(3) * V(2, 3)], ...
matthiasm@8 101 [mu(3); mu(3) + L(3) * V(3, 3)], plot_opts{:})];
matthiasm@8 102 end
matthiasm@8 103
matthiasm@8 104 s = surf(reshape(z(1, :), [(n + 1) (n + 1)]), ...
matthiasm@8 105 reshape(z(2, :), [(n + 1) (n + 1)]), ...
matthiasm@8 106 reshape(z(3, :), [(n + 1) (n + 1)]), ...
matthiasm@8 107 surf_opts{:});
matthiasm@8 108
matthiasm@8 109 if (~holding) hold off; end