annotate _FullBNT/KPMtools/plotcov2.m @ 9:4ea6619cb3f5 tip

removed log files
author matthiasm
date Fri, 11 Apr 2014 15:55:11 +0100
parents b5b38998ef3b
children
rev   line source
matthiasm@8 1 % PLOTCOV2 - Plots a covariance ellipse with major and minor axes
matthiasm@8 2 % for a bivariate Gaussian distribution.
matthiasm@8 3 %
matthiasm@8 4 % Usage:
matthiasm@8 5 % h = plotcov2(mu, Sigma[, OPTIONS]);
matthiasm@8 6 %
matthiasm@8 7 % Inputs:
matthiasm@8 8 % mu - a 2 x 1 vector giving the mean of the distribution.
matthiasm@8 9 % Sigma - a 2 x 2 symmetric positive semi-definite matrix giving
matthiasm@8 10 % the covariance of the distribution (or the zero matrix).
matthiasm@8 11 %
matthiasm@8 12 % Options:
matthiasm@8 13 % 'conf' - a scalar between 0 and 1 giving the confidence
matthiasm@8 14 % interval (i.e., the fraction of probability mass to
matthiasm@8 15 % be enclosed by the ellipse); default is 0.9.
matthiasm@8 16 % 'num-pts' - the number of points to be used to plot the
matthiasm@8 17 % ellipse; default is 100.
matthiasm@8 18 %
matthiasm@8 19 % This function also accepts options for PLOT.
matthiasm@8 20 %
matthiasm@8 21 % Outputs:
matthiasm@8 22 % h - a vector of figure handles to the ellipse boundary and
matthiasm@8 23 % its major and minor axes
matthiasm@8 24 %
matthiasm@8 25 % See also: PLOTCOV3
matthiasm@8 26
matthiasm@8 27 % Copyright (C) 2002 Mark A. Paskin
matthiasm@8 28 %
matthiasm@8 29 % This program is free software; you can redistribute it and/or modify
matthiasm@8 30 % it under the terms of the GNU General Public License as published by
matthiasm@8 31 % the Free Software Foundation; either version 2 of the License, or
matthiasm@8 32 % (at your option) any later version.
matthiasm@8 33 %
matthiasm@8 34 % This program is distributed in the hope that it will be useful, but
matthiasm@8 35 % WITHOUT ANY WARRANTY; without even the implied warranty of
matthiasm@8 36 % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
matthiasm@8 37 % General Public License for more details.
matthiasm@8 38 %
matthiasm@8 39 % You should have received a copy of the GNU General Public License
matthiasm@8 40 % along with this program; if not, write to the Free Software
matthiasm@8 41 % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
matthiasm@8 42 % USA.
matthiasm@8 43 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
matthiasm@8 44
matthiasm@8 45 function h = plotcov2(mu, Sigma, varargin)
matthiasm@8 46
matthiasm@8 47 if size(Sigma) ~= [2 2], error('Sigma must be a 2 by 2 matrix'); end
matthiasm@8 48 if length(mu) ~= 2, error('mu must be a 2 by 1 vector'); end
matthiasm@8 49
matthiasm@8 50 [p, ...
matthiasm@8 51 n, ...
matthiasm@8 52 plot_opts] = process_options(varargin, 'conf', 0.9, ...
matthiasm@8 53 'num-pts', 100);
matthiasm@8 54 h = [];
matthiasm@8 55 holding = ishold;
matthiasm@8 56 if (Sigma == zeros(2, 2))
matthiasm@8 57 z = mu;
matthiasm@8 58 else
matthiasm@8 59 % Compute the Mahalanobis radius of the ellipsoid that encloses
matthiasm@8 60 % the desired probability mass.
matthiasm@8 61 k = conf2mahal(p, 2);
matthiasm@8 62 % The major and minor axes of the covariance ellipse are given by
matthiasm@8 63 % the eigenvectors of the covariance matrix. Their lengths (for
matthiasm@8 64 % the ellipse with unit Mahalanobis radius) are given by the
matthiasm@8 65 % square roots of the corresponding eigenvalues.
matthiasm@8 66 if (issparse(Sigma))
matthiasm@8 67 [V, D] = eigs(Sigma);
matthiasm@8 68 else
matthiasm@8 69 [V, D] = eig(Sigma);
matthiasm@8 70 end
matthiasm@8 71 % Compute the points on the surface of the ellipse.
matthiasm@8 72 t = linspace(0, 2*pi, n);
matthiasm@8 73 u = [cos(t); sin(t)];
matthiasm@8 74 w = (k * V * sqrt(D)) * u;
matthiasm@8 75 z = repmat(mu, [1 n]) + w;
matthiasm@8 76 % Plot the major and minor axes.
matthiasm@8 77 L = k * sqrt(diag(D));
matthiasm@8 78 h = plot([mu(1); mu(1) + L(1) * V(1, 1)], ...
matthiasm@8 79 [mu(2); mu(2) + L(1) * V(2, 1)], plot_opts{:});
matthiasm@8 80 hold on;
matthiasm@8 81 h = [h; plot([mu(1); mu(1) + L(2) * V(1, 2)], ...
matthiasm@8 82 [mu(2); mu(2) + L(2) * V(2, 2)], plot_opts{:})];
matthiasm@8 83 end
matthiasm@8 84
matthiasm@8 85 h = [h; plot(z(1, :), z(2, :), plot_opts{:})];
matthiasm@8 86 if (~holding) hold off; end