annotate _FullBNT/BNT/learning/score_dags_old.m @ 9:4ea6619cb3f5 tip

removed log files
author matthiasm
date Fri, 11 Apr 2014 15:55:11 +0100
parents b5b38998ef3b
children
rev   line source
matthiasm@8 1 function score = score_dags(data, ns, dags, varargin)
matthiasm@8 2 % SCORE_DAGS Compute the score of one or more DAGs
matthiasm@8 3 % score = score_dags(data, ns, dags, varargin)
matthiasm@8 4 %
matthiasm@8 5 % data{i,m} = value of node i in case m (can be a cell array).
matthiasm@8 6 % node_sizes(i) is the number of size of node i.
matthiasm@8 7 % dags{g} is the g'th dag
matthiasm@8 8 % score(g) is the score of the i'th dag
matthiasm@8 9 %
matthiasm@8 10 % The following optional arguments can be specified in the form of name/value pairs:
matthiasm@8 11 % [default value in brackets]
matthiasm@8 12 %
matthiasm@8 13 % scoring_fn - 'bayesian' or 'bic' [ 'bayesian' ]
matthiasm@8 14 % Currently, only networks with all tabular nodes support Bayesian scoring.
matthiasm@8 15 % type - type{i} is the type of CPD to use for node i, where the type is a string
matthiasm@8 16 % of the form 'tabular', 'noisy_or', 'gaussian', etc. [ all cells contain 'tabular' ]
matthiasm@8 17 % params - params{i} contains optional arguments passed to the CPD constructor for node i,
matthiasm@8 18 % or [] if none. [ all cells contain {'prior', 1}, meaning use uniform Dirichlet priors ]
matthiasm@8 19 % discrete - the list of discrete nodes [ 1:N ]
matthiasm@8 20 % clamped - clamped(i,m) = 1 if node i is clamped in case m [ zeros(N, ncases) ]
matthiasm@8 21 %
matthiasm@8 22 % e.g., score = score_dags(data, ns, mk_all_dags(n), 'scoring_fn', 'bic', 'params', []);
matthiasm@8 23 %
matthiasm@8 24 % If the DAGs have a lot of families in common, we can cache the sufficient statistics,
matthiasm@8 25 % making this potentially more efficient than scoring the DAGs one at a time.
matthiasm@8 26 % (Caching is not currently implemented, however.)
matthiasm@8 27
matthiasm@8 28 [n ncases] = size(data);
matthiasm@8 29
matthiasm@8 30 % set default params
matthiasm@8 31 type = cell(1,n);
matthiasm@8 32 params = cell(1,n);
matthiasm@8 33 for i=1:n
matthiasm@8 34 type{i} = 'tabular';
matthiasm@8 35 params{i} = { 'prior_type', 'dirichlet', 'dirichlet_weight', 1 };
matthiasm@8 36 end
matthiasm@8 37 scoring_fn = 'bayesian';
matthiasm@8 38 discrete = 1:n;
matthiasm@8 39 clamped = zeros(n, ncases);
matthiasm@8 40
matthiasm@8 41 args = varargin;
matthiasm@8 42 nargs = length(args);
matthiasm@8 43 for i=1:2:nargs
matthiasm@8 44 switch args{i},
matthiasm@8 45 case 'scoring_fn', scoring_fn = args{i+1};
matthiasm@8 46 case 'type', type = args{i+1};
matthiasm@8 47 case 'discrete', discrete = args{i+1};
matthiasm@8 48 case 'clamped', clamped = args{i+1};
matthiasm@8 49 case 'params', if isempty(args{i+1}), params = cell(1,n); else params = args{i+1}; end
matthiasm@8 50 end
matthiasm@8 51 end
matthiasm@8 52
matthiasm@8 53 NG = length(dags);
matthiasm@8 54 score = zeros(1, NG);
matthiasm@8 55 for g=1:NG
matthiasm@8 56 dag = dags{g};
matthiasm@8 57 for j=1:n
matthiasm@8 58 u = find(clamped(j,:)==0);
matthiasm@8 59 ps = parents(dag, j);
matthiasm@8 60 score(g) = score(g) + score_family(j, ps, type{j}, scoring_fn, ns, discrete, data(:,u), params{j});
matthiasm@8 61 end
matthiasm@8 62 end