Mercurial > hg > mauch-mirex-2010
annotate _FullBNT/BNT/learning/learn_params.m @ 9:4ea6619cb3f5 tip
removed log files
author | matthiasm |
---|---|
date | Fri, 11 Apr 2014 15:55:11 +0100 |
parents | b5b38998ef3b |
children |
rev | line source |
---|---|
matthiasm@8 | 1 function bnet = learn_params(bnet, data) |
matthiasm@8 | 2 % LEARN_PARAMS Find the maximum likelihood params for a fully observed model |
matthiasm@8 | 3 % bnet = learn_params(bnet, data) |
matthiasm@8 | 4 % |
matthiasm@8 | 5 % data(i,m) is the value of node i in case m (can be a cell array) |
matthiasm@8 | 6 % |
matthiasm@8 | 7 % We set bnet.CPD{i} to its ML/MAP estimate. |
matthiasm@8 | 8 % |
matthiasm@8 | 9 % Currently we assume no param tying |
matthiasm@8 | 10 |
matthiasm@8 | 11 % AND THAT EACH DATA POINT IS A SCALAR - no longer assumed |
matthiasm@8 | 12 |
matthiasm@8 | 13 %if iscell(data) |
matthiasm@8 | 14 % data=cell2num(data); |
matthiasm@8 | 15 %end |
matthiasm@8 | 16 [n ncases] = size(data); |
matthiasm@8 | 17 for j=1:n |
matthiasm@8 | 18 e = bnet.equiv_class(j); |
matthiasm@8 | 19 assert(e==j); |
matthiasm@8 | 20 if adjustable_CPD(bnet.CPD{e}) |
matthiasm@8 | 21 fam = family(bnet.dag,j); |
matthiasm@8 | 22 %bnet.CPD{j} = learn_params(bnet.CPD{j}, data(fam,:)); |
matthiasm@8 | 23 bnet.CPD{j} = learn_params(bnet.CPD{j}, fam, data, bnet.node_sizes, bnet.cnodes); |
matthiasm@8 | 24 end |
matthiasm@8 | 25 end |
matthiasm@8 | 26 |