Mercurial > hg > match-vamp
view src/Matcher.cpp @ 191:f415747b151b re-minimise
Normalised path costs should use a different type from un-normalised ones (because they are in a different range)
author | Chris Cannam |
---|---|
date | Thu, 26 Feb 2015 15:52:16 +0000 |
parents | 487261a22b18 |
children | b5deca82e074 |
line wrap: on
line source
/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */ /* Vamp feature extraction plugin using the MATCH audio alignment algorithm. Centre for Digital Music, Queen Mary, University of London. This file copyright 2007 Simon Dixon, Chris Cannam and QMUL. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. See the file COPYING included with this distribution for more information. */ #include "Matcher.h" #include <iostream> #include <cstdlib> #include <cassert> using namespace std; //#define DEBUG_MATCHER 1 Matcher::Matcher(Parameters parameters, DistanceMetric::Parameters dparams, Matcher *p) : m_params(parameters), m_metric(dparams) { #ifdef DEBUG_MATCHER cerr << "*** Matcher: hopTime = " << parameters.hopTime << ", blockTime = " << parameters.blockTime << ", maxRunCount = " << parameters.maxRunCount << ", diagonalWeight = " << parameters.diagonalWeight << endl; #endif m_otherMatcher = p; // the first matcher will need this to be set later m_firstPM = (!p); m_frameCount = 0; m_runCount = 0; m_blockSize = 0; m_blockSize = int(m_params.blockTime / m_params.hopTime + 0.5); #ifdef DEBUG_MATCHER cerr << "Matcher: m_blockSize = " << m_blockSize << endl; #endif m_initialised = false; } Matcher::~Matcher() { #ifdef DEBUG_MATCHER cerr << "Matcher(" << this << ")::~Matcher()" << endl; #endif } void Matcher::init() { if (m_initialised) return; m_features = featureseq_t(m_blockSize); m_distXSize = m_blockSize * 2; size(); m_frameCount = 0; m_runCount = 0; m_initialised = true; } bool Matcher::isRowAvailable(int i) { if (i < 0 || i >= int(m_first.size())) return false; for (int j = m_first[i]; j < int(m_first[i] + m_bestPathCost[i].size()); ++j) { if (isAvailable(i, j)) { return true; } } return false; } bool Matcher::isColAvailable(int i) { return m_otherMatcher->isRowAvailable(i); } bool Matcher::isInRange(int i, int j) { if (m_firstPM) { return ((i >= 0) && (i < int(m_first.size())) && (j >= m_first[i]) && (j < int(m_first[i] + m_bestPathCost[i].size()))); } else { return m_otherMatcher->isInRange(j, i); } } bool Matcher::isAvailable(int i, int j) { if (m_firstPM) { if (isInRange(i, j)) { return (m_bestPathCost[i][j - m_first[i]] >= 0); } else { return false; } } else { return m_otherMatcher->isAvailable(j, i); } } pair<int, int> Matcher::getColRange(int i) { if (i < 0 || i >= int(m_first.size())) { cerr << "ERROR: Matcher::getColRange(" << i << "): Index out of range" << endl; throw "Index out of range"; } else { return pair<int, int>(m_first[i], m_last[i]); } } pair<int, int> Matcher::getRowRange(int i) { return m_otherMatcher->getColRange(i); } distance_t Matcher::getDistance(int i, int j) { if (m_firstPM) { if (!isInRange(i, j)) { cerr << "ERROR: Matcher::getDistance(" << i << ", " << j << "): " << "Location is not in range" << endl; throw "Distance not available"; } distance_t dist = m_distance[i][j - m_first[i]]; if (dist == InvalidDistance) { cerr << "ERROR: Matcher::getDistance(" << i << ", " << j << "): " << "Location is in range, but distance (" << distance_print_t(dist) << ") is invalid or has not been set" << endl; throw "Distance not available"; } return dist; } else { return m_otherMatcher->getDistance(j, i); } } void Matcher::setDistance(int i, int j, distance_t distance) { if (m_firstPM) { if (!isInRange(i, j)) { cerr << "ERROR: Matcher::setDistance(" << i << ", " << j << ", " << distance_print_t(distance) << "): Location is out of range" << endl; throw "Indices out of range"; } m_distance[i][j - m_first[i]] = distance; } else { m_otherMatcher->setDistance(j, i, distance); } } normpathcost_t Matcher::getNormalisedPathCost(int i, int j) { // normalised for path length. 1+ prevents division by zero here return normpathcost_t(getPathCost(i, j)) / normpathcost_t(1 + i + j); } pathcost_t Matcher::getPathCost(int i, int j) { if (m_firstPM) { if (!isAvailable(i, j)) { if (!isInRange(i, j)) { cerr << "ERROR: Matcher::getPathCost(" << i << ", " << j << "): " << "Location is not in range" << endl; } else { cerr << "ERROR: Matcher::getPathCost(" << i << ", " << j << "): " << "Location is in range, but pathCost (" << m_bestPathCost[i][j - m_first[i]] << ") is invalid or has not been set" << endl; } throw "Path cost not available"; } return m_bestPathCost[i][j - m_first[i]]; } else { return m_otherMatcher->getPathCost(j, i); } } void Matcher::setPathCost(int i, int j, advance_t dir, pathcost_t pathCost) { if (m_firstPM) { if (!isInRange(i, j)) { cerr << "ERROR: Matcher::setPathCost(" << i << ", " << j << ", " << dir << ", " << pathCost << "): Location is out of range" << endl; throw "Indices out of range"; } m_advance[i][j - m_first[i]] = dir; m_bestPathCost[i][j - m_first[i]] = pathCost; } else { if (dir == AdvanceThis) { dir = AdvanceOther; } else if (dir == AdvanceOther) { dir = AdvanceThis; } m_otherMatcher->setPathCost(j, i, dir, pathCost); } } void Matcher::size() { int distSize = (m_params.maxRunCount + 1) * m_blockSize; m_bestPathCost.resize(m_distXSize, pathcostvec_t(distSize, InvalidPathCost)); m_distance.resize(m_distXSize, distancevec_t(distSize, InvalidDistance)); m_advance.resize(m_distXSize, advancevec_t(distSize, AdvanceNone)); m_first.resize(m_distXSize, 0); m_last.resize(m_distXSize, 0); } void Matcher::consumeFeatureVector(const feature_t &feature) { if (!m_initialised) init(); int frameIndex = m_frameCount % m_blockSize; m_features[frameIndex] = feature; calcAdvance(); } void Matcher::calcAdvance() { int frameIndex = m_frameCount % m_blockSize; if (m_frameCount >= m_distXSize) { m_distXSize *= 2; size(); } if (m_firstPM && (m_frameCount >= m_blockSize)) { int len = m_last[m_frameCount - m_blockSize] - m_first[m_frameCount - m_blockSize]; // We need to copy distance[m_frameCount-m_blockSize] to // distance[m_frameCount], and then truncate // distance[m_frameCount-m_blockSize] to its first len elements. // Same for bestPathCost. distancevec_t dOld(m_distance[m_frameCount - m_blockSize]); distancevec_t dNew(len, InvalidDistance); pathcostvec_t bpcOld(m_bestPathCost[m_frameCount - m_blockSize]); pathcostvec_t bpcNew(len, InvalidPathCost); advancevec_t adOld(m_advance[m_frameCount - m_blockSize]); advancevec_t adNew(len, AdvanceNone); for (int i = 0; i < len; ++i) { dNew[i] = dOld[i]; bpcNew[i] = bpcOld[i]; adNew[i] = adOld[i]; } m_distance[m_frameCount] = dOld; m_distance[m_frameCount - m_blockSize] = dNew; m_bestPathCost[m_frameCount] = bpcOld; m_bestPathCost[m_frameCount - m_blockSize] = bpcNew; m_advance[m_frameCount] = adOld; m_advance[m_frameCount - m_blockSize] = adNew; } int stop = m_otherMatcher->m_frameCount; int index = stop - m_blockSize; if (index < 0) index = 0; m_first[m_frameCount] = index; m_last[m_frameCount] = stop; for ( ; index < stop; index++) { distance_t distance = m_metric.calcDistance (m_features[frameIndex], m_otherMatcher->m_features[index % m_blockSize]); pathcost_t straightIncrement(distance); pathcost_t diagIncrement = pathcost_t(distance * m_params.diagonalWeight); if ((m_frameCount == 0) && (index == 0)) { // first element updateValue(0, 0, AdvanceNone, 0, distance); } else if (m_frameCount == 0) { // first row updateValue(0, index, AdvanceOther, getPathCost(0, index-1), distance); } else if (index == 0) { // first column updateValue(m_frameCount, index, AdvanceThis, getPathCost(m_frameCount - 1, 0), distance); } else if (index == m_otherMatcher->m_frameCount - m_blockSize) { // missing value(s) due to cutoff // - no previous value in current row (resp. column) // - no diagonal value if prev. dir. == curr. dirn pathcost_t min2 = getPathCost(m_frameCount - 1, index); // cerr << "NOTE: missing value at i = " << m_frameCount << ", j = " // << index << " (first = " << m_firstPM << ")" << endl; // if ((m_firstPM && (first[m_frameCount - 1] == index)) || // (!m_firstPM && (m_last[index-1] < m_frameCount))) if (m_first[m_frameCount - 1] == index) { updateValue(m_frameCount, index, AdvanceThis, min2, distance); } else { pathcost_t min1 = getPathCost(m_frameCount - 1, index - 1); if (min1 + diagIncrement <= min2 + straightIncrement) { updateValue(m_frameCount, index, AdvanceBoth, min1, distance); } else { updateValue(m_frameCount, index, AdvanceThis, min2, distance); } } } else { pathcost_t min1 = getPathCost(m_frameCount, index - 1); pathcost_t min2 = getPathCost(m_frameCount - 1, index); pathcost_t min3 = getPathCost(m_frameCount - 1, index - 1); pathcost_t cost1 = min1 + straightIncrement; pathcost_t cost2 = min2 + straightIncrement; pathcost_t cost3 = min3 + diagIncrement; // Choosing is easy if there is a strict cheapest of the // three. If two or more share the lowest cost, we choose // in order of preference: cost3 (AdvanceBoth), cost2 // (AdvanceThis), cost1 (AdvanceOther) if we are the first // matcher; and cost3 (AdvanceBoth), cost1 (AdvanceOther), // cost2 (AdvanceThis) if we are the second matcher. That // is, we always prioritise the diagonal followed by the // first matcher. if (( m_firstPM && (cost1 < cost2)) || (!m_firstPM && (cost1 <= cost2))) { if (cost3 <= cost1) { updateValue(m_frameCount, index, AdvanceBoth, min3, distance); } else { updateValue(m_frameCount, index, AdvanceOther, min1, distance); } } else { if (cost3 <= cost2) { updateValue(m_frameCount, index, AdvanceBoth, min3, distance); } else { updateValue(m_frameCount, index, AdvanceThis, min2, distance); } } } m_otherMatcher->m_last[index]++; } // loop for row (resp. column) m_frameCount++; m_runCount++; m_otherMatcher->m_runCount = 0; } void Matcher::updateValue(int i, int j, advance_t dir, pathcost_t value, distance_t distance) { pathcost_t increment = distance; if (dir == AdvanceBoth) { increment = pathcost_t(increment * m_params.diagonalWeight); } pathcost_t newValue = value + increment; if (MaxPathCost - increment < value) { cerr << "ERROR: Path cost overflow at i=" << i << ", j=" << j << ": " << value << " + " << increment << " > " << MaxPathCost << endl; newValue = MaxPathCost; } if (m_firstPM) { setDistance(i, j, distance); setPathCost(i, j, dir, newValue); } else { if (dir == AdvanceThis) dir = AdvanceOther; else if (dir == AdvanceOther) dir = AdvanceThis; int idx = i - m_otherMatcher->m_first[j]; if (idx < 0 || size_t(idx) == m_otherMatcher->m_distance[j].size()) { // This should never happen, but if we allow arbitrary // pauses in either direction, and arbitrary lengths at // end, it is better than a segmentation fault. cerr << "Emergency resize: " << idx << " -> " << idx * 2 << endl; m_otherMatcher->m_bestPathCost[j].resize(idx * 2, InvalidPathCost); m_otherMatcher->m_distance[j].resize(idx * 2, InvalidDistance); m_otherMatcher->m_advance[j].resize(idx * 2, AdvanceNone); } m_otherMatcher->setDistance(j, i, distance); m_otherMatcher->setPathCost(j, i, dir, newValue); } } advance_t Matcher::getAdvance(int i, int j) { if (m_firstPM) { if (!isInRange(i, j)) { cerr << "ERROR: Matcher::getAdvance(" << i << ", " << j << "): " << "Location is not in range" << endl; throw "Advance not available"; } return m_advance[i][j - m_first[i]]; } else { return m_otherMatcher->getAdvance(j, i); } }