Mercurial > hg > match-vamp
view Matcher.cpp @ 13:66082cc488c3
Pull out total energies into a separate vector (so that the frame vectors only contain the real features)
author | Chris Cannam |
---|---|
date | Fri, 10 Oct 2014 10:52:07 +0100 |
parents | 6ea008aa8817 |
children | cdead4a52755 |
line wrap: on
line source
/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */ /* Vamp feature extraction plugin using the MATCH audio alignment algorithm. Centre for Digital Music, Queen Mary, University of London. This file copyright 2007 Simon Dixon, Chris Cannam and QMUL. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. See the file COPYING included with this distribution for more information. */ #include "Matcher.h" #include "Finder.h" #include <iostream> #include <cstdlib> bool Matcher::silent = true; const double Matcher::decay = 0.99; const double Matcher::silenceThreshold = 0.0004; const int Matcher::MAX_RUN_COUNT = 3; //#define DEBUG_MATCHER 1 Matcher::Matcher(float rate, Matcher *p) { #ifdef DEBUG_MATCHER std::cerr << "Matcher::Matcher(" << rate << ", " << p << ")" << std::endl; #endif sampleRate = rate; otherMatcher = p; // the first matcher will need this to be set later firstPM = (!p); matchFileOffset = 0; ltAverage = 0; frameCount = 0; runCount = 0; paused = false; hopSize = 0; fftSize = 0; blockSize = 0; hopTime = 0.020; // DEFAULT, overridden with -h //!!! fftTime = 0.04644; // DEFAULT, overridden with -f blockTime = 10.0; // DEFAULT, overridden with -c normalise1 = true; normalise2 = false; normalise3 = false; normalise4 = true; useSpectralDifference = true; useChromaFrequencyMap = false; scale = 90; maxFrames = 0; // stop at EOF hopSize = lrint(sampleRate * hopTime); fftSize = lrint(pow(2.0, (int)lrint(log(fftTime * sampleRate) / log(2.0)))); blockSize = lrint(blockTime / hopTime); distance = 0; bestPathCost = 0; distYSizes = 0; distXSize = 0; initialised = false; } // default constructor void Matcher::setHopSize(int sz) { if (initialised) { std::cerr << "Matcher::setHopSize: Can't set after use" << std::endl; return; } hopSize = sz; hopTime = float(hopSize) / sampleRate; blockTime = blockSize * hopTime; } Matcher::~Matcher() { #ifdef DEBUG_MATCHER std::cerr << "Matcher(" << this << ")::~Matcher()" << std::endl; #endif if (initialised) { for (int i = 0; i < distXSize; ++i) { if (distance[i]) { free(distance[i]); free(bestPathCost[i]); } } free(distance); free(bestPathCost); free(first); free(last); free(distYSizes); } } void Matcher::print() { cerr << toString() << endl; } // print() string Matcher::toString() { std::stringstream os; os << "Matcher " << this << ": (" << sampleRate << "kHz)" << "\n\tHop size: " << hopSize << "\n\tFFT size: " << fftSize << "\n\tBlock size: " << blockSize; return os.str(); } // toString() void Matcher::init() { if (initialised) return; initialised = true; makeFreqMap(fftSize, sampleRate); initVector<double>(prevFrame, freqMapSize); initVector<double>(newFrame, freqMapSize); initMatrix<double>(frames, blockSize, freqMapSize); initVector<double>(totalEnergies, blockSize); int distSize = (MAX_RUN_COUNT + 1) * blockSize; distXSize = blockSize * 2; // std::cerr << "Matcher::init: distXSize = " << distXSize << std::endl; distance = (unsigned char **)malloc(distXSize * sizeof(unsigned char *)); bestPathCost = (int **)malloc(distXSize * sizeof(int *)); distYSizes = (int *)malloc(distXSize * sizeof(int)); for (int i = 0; i < blockSize; ++i) { distance[i] = (unsigned char *)malloc(distSize * sizeof(unsigned char)); bestPathCost[i] = (int *)malloc(distSize * sizeof(int)); distYSizes[i] = distSize; } for (int i = blockSize; i < distXSize; ++i) { distance[i] = 0; } first = (int *)malloc(distXSize * sizeof(int)); last = (int *)malloc(distXSize * sizeof(int)); frameCount = 0; runCount = 0; // frameRMS = 0; ltAverage = 0; if (!silent) print(); } // init void Matcher::makeFreqMap(int fftSize, float sampleRate) { initVector<int>(freqMap, fftSize/2 + 1); if (useChromaFrequencyMap) makeChromaFrequencyMap(fftSize, sampleRate); else makeStandardFrequencyMap(fftSize, sampleRate); } // makeFreqMap() void Matcher::makeStandardFrequencyMap(int fftSize, float sampleRate) { double binWidth = sampleRate / fftSize; int crossoverBin = (int)(2 / (pow(2, 1/12.0) - 1)); int crossoverMidi = lrint(log(crossoverBin*binWidth/440.0)/ log(2.0) * 12 + 69); // freq = 440 * Math.pow(2, (midi-69)/12.0) / binWidth; int i = 0; while (i <= crossoverBin) { freqMap[i] = i; ++i; } while (i <= fftSize/2) { double midi = log(i*binWidth/440.0) / log(2.0) * 12 + 69; if (midi > 127) midi = 127; freqMap[i++] = crossoverBin + lrint(midi) - crossoverMidi; } freqMapSize = freqMap[i-1] + 1; if (!silent) { cerr << "Standard map size: " << freqMapSize << "; Crossover at: " << crossoverBin << endl; //!!! for (i = 0; i < fftSize / 2; i++) // cerr << "freqMap[" << i << "] = " << freqMap[i] << endl; } } // makeStandardFrequencyMap() void Matcher::makeChromaFrequencyMap(int fftSize, float sampleRate) { double binWidth = sampleRate / fftSize; int crossoverBin = (int)(1 / (pow(2, 1/12.0) - 1)); // freq = 440 * Math.pow(2, (midi-69)/12.0) / binWidth; int i = 0; while (i <= crossoverBin) freqMap[i++] = 0; while (i <= fftSize/2) { double midi = log(i*binWidth/440.0) / log(2.0) * 12 + 69; freqMap[i++] = (lrint(midi)) % 12 + 1; } freqMapSize = 13; if (!silent) { cerr << "Chroma map size: " << freqMapSize << "; Crossover at: " << crossoverBin << endl; for (i = 0; i < fftSize / 2; i++) cerr << "freqMap[" << i << "] = " << freqMap[i] << endl; } } // makeChromaFrequencyMap() void Matcher::processFrame(double *reBuffer, double *imBuffer) { if (!initialised) init(); for (int i = 0; i < (int)newFrame.size(); ++i) { newFrame[i] = 0; } double rms = 0; for (int i = 0; i <= fftSize/2; i++) { double mag = reBuffer[i] * reBuffer[i] + imBuffer[i] * imBuffer[i]; rms += mag; newFrame[freqMap[i]] += mag; } rms = sqrt(rms / (fftSize/2)); int frameIndex = frameCount % blockSize; if (frameCount >= distXSize) { // std::cerr << "Resizing " << distXSize << " -> " << distXSize * 2 << std::endl; distXSize *= 2; distance = (unsigned char **)realloc(distance, distXSize * sizeof(unsigned char *)); bestPathCost = (int **)realloc(bestPathCost, distXSize * sizeof(int *)); distYSizes = (int *)realloc(distYSizes, distXSize * sizeof(int)); first = (int *)realloc(first, distXSize * sizeof(int)); last = (int *)realloc(last, distXSize * sizeof(int)); for (int i = distXSize/2; i < distXSize; ++i) { distance[i] = 0; } } if (firstPM && (frameCount >= blockSize)) { int len = last[frameCount - blockSize] - first[frameCount - blockSize]; // We need to copy distance[frameCount-blockSize] to // distance[frameCount], and then truncate // distance[frameCount-blockSize] to its first len elements. // Same for bestPathCost. /* std::cerr << "Matcher(" << this << "): moving " << distYSizes[frameCount - blockSize] << " from " << frameCount - blockSize << " to " << frameCount << ", allocating " << len << " for " << frameCount - blockSize << std::endl; */ distance[frameCount] = distance[frameCount - blockSize]; distance[frameCount - blockSize] = (unsigned char *) malloc(len * sizeof(unsigned char)); for (int i = 0; i < len; ++i) { distance[frameCount - blockSize][i] = distance[frameCount][i]; } bestPathCost[frameCount] = bestPathCost[frameCount - blockSize]; bestPathCost[frameCount - blockSize] = (int *) malloc(len * sizeof(int)); for (int i = 0; i < len; ++i) { bestPathCost[frameCount - blockSize][i] = bestPathCost[frameCount][i]; } distYSizes[frameCount] = distYSizes[frameCount - blockSize]; distYSizes[frameCount - blockSize] = len; } double totalEnergy = 0; if (useSpectralDifference) { for (int i = 0; i < freqMapSize; i++) { totalEnergy += newFrame[i]; if (newFrame[i] > prevFrame[i]) { frames[frameIndex][i] = newFrame[i] - prevFrame[i]; } else { frames[frameIndex][i] = 0; } } } else { for (int i = 0; i < freqMapSize; i++) { frames[frameIndex][i] = newFrame[i]; totalEnergy += frames[frameIndex][i]; } } totalEnergies[frameIndex] = totalEnergy; double decay = frameCount >= 200 ? 0.99: (frameCount < 100? 0: (frameCount - 100) / 100.0); if (ltAverage == 0) ltAverage = totalEnergy; else ltAverage = ltAverage * decay + totalEnergy * (1.0 - decay); // System.err.println(Format.d(ltAverage,4) + " " + // Format.d(totalEnergy) + " " + // Format.d(frameRMS)); // std::cerr << "ltAverage: " << ltAverage << ", totalEnergy: " << totalEnergy << ", frameRMS: " << rms << std::endl; if (rms <= 0.01) //!!! silenceThreshold) for (int i = 0; i < freqMapSize; i++) frames[frameIndex][i] = 0; else if (normalise1) for (int i = 0; i < freqMapSize; i++) frames[frameIndex][i] /= totalEnergy; else if (normalise3) for (int i = 0; i < freqMapSize; i++) frames[frameIndex][i] /= ltAverage; int stop = otherMatcher->frameCount; int index = stop - blockSize; if (index < 0) index = 0; first[frameCount] = index; last[frameCount] = stop; bool overflow = false; int mn= -1; int mx= -1; for ( ; index < stop; index++) { int dMN = calcDistance(frames[frameIndex], otherMatcher->frames[index % blockSize]); if (mx<0) mx = mn = dMN; else if (dMN > mx) mx = dMN; else if (dMN < mn) mn = dMN; if (dMN >= 255) { overflow = true; dMN = 255; } if ((frameCount == 0) && (index == 0)) // first element setValue(0, 0, 0, 0, dMN); else if (frameCount == 0) // first row setValue(0, index, ADVANCE_OTHER, getValue(0, index-1, true), dMN); else if (index == 0) // first column setValue(frameCount, index, ADVANCE_THIS, getValue(frameCount - 1, 0, true), dMN); else if (index == otherMatcher->frameCount - blockSize) { // missing value(s) due to cutoff // - no previous value in current row (resp. column) // - no diagonal value if prev. dir. == curr. dirn int min2 = getValue(frameCount - 1, index, true); // if ((firstPM && (first[frameCount - 1] == index)) || // (!firstPM && (last[index-1] < frameCount))) if (first[frameCount - 1] == index) setValue(frameCount, index, ADVANCE_THIS, min2, dMN); else { int min1 = getValue(frameCount - 1, index - 1, true); if (min1 + dMN <= min2) setValue(frameCount, index, ADVANCE_BOTH, min1,dMN); else setValue(frameCount, index, ADVANCE_THIS, min2,dMN); } } else { int min1 = getValue(frameCount, index-1, true); int min2 = getValue(frameCount - 1, index, true); int min3 = getValue(frameCount - 1, index-1, true); if (min1 <= min2) { if (min3 + dMN <= min1) setValue(frameCount, index, ADVANCE_BOTH, min3,dMN); else setValue(frameCount, index, ADVANCE_OTHER,min1,dMN); } else { if (min3 + dMN <= min2) setValue(frameCount, index, ADVANCE_BOTH, min3,dMN); else setValue(frameCount, index, ADVANCE_THIS, min2,dMN); } } otherMatcher->last[index]++; } // loop for row (resp. column) vector<double> tmp = prevFrame; prevFrame = newFrame; newFrame = tmp; frameCount++; runCount++; otherMatcher->runCount = 0; if (overflow && !silent) cerr << "WARNING: overflow in distance metric: " << "frame " << frameCount << ", val = " << mx << endl; if (!silent) std::cerr << "Frame " << frameCount << ", d = " << (mx-mn) << std::endl; if ((frameCount % 100) == 0) { if (!silent) { cerr << "Progress:" << frameCount << " " << ltAverage << endl; // Profile.report(); } } //!!! if (frameCount == maxFrames) // closeStreams(); // } } // processFrame() int Matcher::calcDistance(const vector<double> &f1, const vector<double> &f2) { double d = 0; double sum = 0; for (int i = 0; i < freqMapSize; i++) { d += fabs(f1[i] - f2[i]); sum += f1[i] + f2[i]; } // System.err.print(" " + Format.d(d,3)); if (sum == 0) return 0; if (normalise2) return (int)(scale * d / sum); // 0 <= d/sum <= 2 if (!normalise4) return (int)(scale * d); // note if this were to be restored, it would have to use // totalEnergies vector instead of f1[freqMapSize] which used to // store the total energy: // double weight = (5 + Math.log(f1[freqMapSize] + f2[freqMapSize]))/10.0; double weight = (8 + log(sum)) / 10.0; // if (weight < mins) { // mins = weight; // System.err.println(Format.d(mins,3) + " " + Format.d(maxs)); // } // if (weight > maxs) { // maxs = weight; // System.err.println(Format.d(mins,3) + " " + Format.d(maxs)); // } if (weight < 0) weight = 0; else if (weight > 1) weight = 1; return (int)(scale * d / sum * weight); } // calcDistance() int Matcher::getValue(int i, int j, bool firstAttempt) { if (firstPM) return bestPathCost[i][j - first[i]]; else return otherMatcher->bestPathCost[j][i - otherMatcher->first[j]]; } // getValue() void Matcher::setValue(int i, int j, int dir, int value, int dMN) { if (firstPM) { distance[i][j - first[i]] = (unsigned char)((dMN & MASK) | dir); bestPathCost[i][j - first[i]] = (value + (dir==ADVANCE_BOTH? dMN*2: dMN)); } else { if (dir == ADVANCE_THIS) dir = ADVANCE_OTHER; else if (dir == ADVANCE_OTHER) dir = ADVANCE_THIS; int idx = i - otherMatcher->first[j]; if (idx == (int)otherMatcher->distYSizes[j]) { // This should never happen, but if we allow arbitrary // pauses in either direction, and arbitrary lengths at // end, it is better than a segmentation fault. std::cerr << "Emergency resize: " << idx << " -> " << idx * 2 << std::endl; otherMatcher->distYSizes[j] = idx * 2; otherMatcher->bestPathCost[j] = (int *)realloc(otherMatcher->bestPathCost[j], idx * 2 * sizeof(int)); otherMatcher->distance[j] = (unsigned char *)realloc(otherMatcher->distance[j], idx * 2 * sizeof(unsigned char)); } otherMatcher->distance[j][idx] = (unsigned char)((dMN & MASK) | dir); otherMatcher->bestPathCost[j][idx] = (value + (dir==ADVANCE_BOTH? dMN*2: dMN)); } } // setValue()