Chris@26
|
1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
|
Chris@26
|
2
|
Chris@26
|
3 /*
|
Chris@26
|
4 Vamp feature extraction plugin using the MATCH audio alignment
|
Chris@26
|
5 algorithm.
|
Chris@26
|
6
|
Chris@26
|
7 Centre for Digital Music, Queen Mary, University of London.
|
Chris@26
|
8 This file copyright 2007 Simon Dixon, Chris Cannam and QMUL.
|
Chris@26
|
9
|
Chris@26
|
10 This program is free software; you can redistribute it and/or
|
Chris@26
|
11 modify it under the terms of the GNU General Public License as
|
Chris@26
|
12 published by the Free Software Foundation; either version 2 of the
|
Chris@26
|
13 License, or (at your option) any later version. See the file
|
Chris@26
|
14 COPYING included with this distribution for more information.
|
Chris@26
|
15 */
|
Chris@26
|
16
|
Chris@26
|
17 #include "DistanceMetric.h"
|
Chris@26
|
18
|
Chris@26
|
19 #include <cassert>
|
Chris@26
|
20 #include <cmath>
|
Chris@133
|
21 #include <iostream>
|
Chris@26
|
22
|
Chris@133
|
23 using namespace std;
|
Chris@26
|
24
|
Chris@140
|
25 //#define DEBUG_DISTANCE_METRIC 1
|
Chris@140
|
26
|
Chris@143
|
27 DistanceMetric::DistanceMetric(Parameters params) :
|
Chris@143
|
28 m_params(params)
|
Chris@140
|
29 {
|
Chris@140
|
30 #ifdef DEBUG_DISTANCE_METRIC
|
Chris@143
|
31 cerr << "*** DistanceMetric: norm = " << m_params.norm
|
Chris@143
|
32 << endl;
|
Chris@140
|
33 #endif
|
Chris@140
|
34 }
|
Chris@140
|
35
|
Chris@26
|
36 double
|
Chris@26
|
37 DistanceMetric::calcDistance(const vector<double> &f1,
|
Chris@26
|
38 const vector<double> &f2)
|
Chris@26
|
39 {
|
Chris@26
|
40 double d = 0;
|
Chris@26
|
41 double sum = 0;
|
Chris@26
|
42
|
Chris@26
|
43 int featureSize = f1.size();
|
Chris@26
|
44 assert(int(f2.size()) == featureSize);
|
Chris@145
|
45
|
Chris@26
|
46 for (int i = 0; i < featureSize; i++) {
|
Chris@26
|
47 d += fabs(f1[i] - f2[i]);
|
Chris@145
|
48 sum += fabs(f1[i]) + fabs(f2[i]);
|
Chris@26
|
49 }
|
Chris@26
|
50
|
Chris@145
|
51 double noise = 1e-3 * featureSize;
|
Chris@145
|
52 d += noise;
|
Chris@145
|
53 sum += noise;
|
Chris@145
|
54
|
Chris@143
|
55 if (sum == 0) {
|
Chris@26
|
56 return 0;
|
Chris@143
|
57 }
|
Chris@26
|
58
|
Chris@143
|
59 double distance = 0;
|
Chris@26
|
60
|
Chris@143
|
61 if (m_params.norm == NormaliseDistanceToSum) {
|
Chris@143
|
62
|
Chris@143
|
63 distance = d / sum; // 0 <= d/sum <= 2
|
Chris@143
|
64
|
Chris@143
|
65 } else if (m_params.norm == NormaliseDistanceToLogSum) {
|
Chris@143
|
66
|
Chris@143
|
67 // note if this were to be restored, it would have to use
|
Chris@143
|
68 // totalEnergies vector instead of f1[freqMapSize] which used to
|
Chris@143
|
69 // store the total energy:
|
Chris@143
|
70 // double weight = (5 + Math.log(f1[freqMapSize] + f2[freqMapSize]))/10.0;
|
Chris@143
|
71
|
Chris@143
|
72 double weight = (8 + log(sum)) / 10.0;
|
Chris@133
|
73
|
Chris@143
|
74 if (weight < 0) weight = 0;
|
Chris@143
|
75 else if (weight > 1) weight = 1;
|
Chris@26
|
76
|
Chris@143
|
77 distance = d / sum * weight;
|
Chris@143
|
78
|
Chris@143
|
79 } else {
|
Chris@143
|
80
|
Chris@143
|
81 distance = d;
|
Chris@143
|
82 }
|
Chris@143
|
83
|
Chris@143
|
84 return distance;
|
Chris@26
|
85 }
|
Chris@26
|
86
|