rmeddis@38: function method=MAPparamsOHCloss ... rmeddis@38: (BFlist, sampleRate, showParams, paramChanges) rmeddis@38: % MAPparamsOHCloss.m is a parameter file, similar in all respects to rmeddis@38: % MAPparamsNormal except that the parameter 'DRNLParams.a' is set to zero. rmeddis@38: % rmeddis@38: % MAPparams<> establishes a complete set of MAP parameters rmeddis@38: % Parameter file names must be of the form rmeddis@38: % rmeddis@38: % Input arguments rmeddis@38: % BFlist (optional) specifies the desired list of channel BFs rmeddis@38: % otherwise defaults set below rmeddis@38: % sampleRate (optional), default is 50000. rmeddis@38: % showParams (optional) =1 prints out the complete set of parameters rmeddis@38: % Output argument rmeddis@38: % method passes a miscelleny of values rmeddis@38: % the use of 'method' is being phased out. use globals rmeddis@38: rmeddis@38: global inputStimulusParams OMEParams DRNLParams IHC_cilia_RPParams rmeddis@38: global IHCpreSynapseParams AN_IHCsynapseParams rmeddis@38: global MacGregorParams MacGregorMultiParams filteredSACFParams rmeddis@38: global experiment % used only by calls from multiThreshold rmeddis@38: % global IHC_VResp_VivoParams rmeddis@38: rmeddis@38: currentFile=mfilename; % i.e. the name of this mfile rmeddis@38: method.parameterSource=currentFile(10:end); % for the record rmeddis@38: rmeddis@38: efferentDelay=0.010; rmeddis@38: method.segmentDuration=efferentDelay; rmeddis@38: rmeddis@38: if nargin<3, showParams=0; end rmeddis@38: if nargin<2, sampleRate=44100; end rmeddis@38: if nargin<1 || BFlist(1)<0 % if BFlist= -1, set BFlist to default rmeddis@38: lowestBF=250; highestBF= 8000; numChannels=21; rmeddis@38: % 21 chs (250-8k)includes BFs at 250 500 1000 2000 4000 8000 rmeddis@38: BFlist=round(logspace(log10(lowestBF),log10(highestBF),numChannels)); rmeddis@38: end rmeddis@38: % BFlist=1000; % single channel option rmeddis@38: rmeddis@38: % preserve for backward campatibility rmeddis@38: method.nonlinCF=BFlist; rmeddis@38: method.dt=1/sampleRate; rmeddis@38: rmeddis@38: %%%%%%%%%%%%%%%%%%%%%%%%%%%% rmeddis@38: % set model parameters rmeddis@38: %%%%%%%%%%%%%%%%%%%%%%%%%%%% rmeddis@38: rmeddis@38: %% #1 inputStimulus rmeddis@38: inputStimulusParams=[]; rmeddis@38: inputStimulusParams.sampleRate= sampleRate; rmeddis@38: rmeddis@38: %% #2 outerMiddleEar rmeddis@38: OMEParams=[]; % clear the structure first rmeddis@38: % outer ear resonances band pass filter [gain lp order hp] rmeddis@38: OMEParams.externalResonanceFilters= [ 10 1 1000 4000]; rmeddis@38: rmeddis@38: % highpass stapes filter rmeddis@38: % Huber gives 2e-9 m at 80 dB and 1 kHz (2e-13 at 0 dB SPL) rmeddis@38: OMEParams.OMEstapesHPcutoff= 1000; rmeddis@38: OMEParams.stapesScalar= 45e-9; rmeddis@38: rmeddis@38: % Acoustic reflex: maximum attenuation should be around 25 dB (Price, 1966) rmeddis@38: % i.e. a minimum ratio of 0.056. rmeddis@38: % 'spikes' model: AR based on brainstem spiking activity (LSR) rmeddis@38: OMEParams.rateToAttenuationFactor=0.05; % * N(all ICspikes) rmeddis@38: % 'probability model': Ar based on AN firing probabilities (LSR) rmeddis@38: OMEParams.rateToAttenuationFactorProb=0.02; % * N(all ANrates) rmeddis@38: rmeddis@38: % asymptote should be around 100-200 ms rmeddis@38: OMEParams.ARtau=.250; % AR smoothing function 250 ms fits Hung and Dallos rmeddis@38: % delay must be longer than the segment length rmeddis@38: OMEParams.ARdelay=efferentDelay; %Moss gives 8.5 ms latency rmeddis@38: OMEParams.ARrateThreshold=40; rmeddis@38: rmeddis@38: %% #3 DRNL rmeddis@38: DRNLParams=[]; % clear the structure first rmeddis@38: % DRNLParams.BFlist=BFlist; rmeddis@38: rmeddis@38: % *** DRNL nonlinear path rmeddis@38: % broken stick compression rmeddis@38: % DRNLParams.a=2e4; % normal value (commented out) rmeddis@38: DRNLParams.a=0; % DRNL.a=0 means no OHCs (no nonlinear path) rmeddis@38: DRNLParams.c=.2; % compression exponent rmeddis@38: DRNLParams.ctBMdB = 10; %Compression threshold dB re 10e-9 m displacement rmeddis@38: rmeddis@38: % filters rmeddis@38: DRNLParams.nonlinOrder= 3; % order of nonlinear gammatone filters rmeddis@38: DRNLParams.nonlinCFs=BFlist; rmeddis@38: DRNLParams.p=0.2895; DRNLParams.q=250; % save p and q for printing only rmeddis@38: % p=0.2895; q=250; % human (% p=0.14; q=366; % cat) rmeddis@38: DRNLParams.nlBWs= DRNLParams.p * BFlist + DRNLParams.q; rmeddis@38: rmeddis@38: % *** DRNL linear path: rmeddis@38: DRNLParams.g=100; % linear path gain factor rmeddis@38: DRNLParams.linOrder=3; % order of linear gammatone filters rmeddis@38: % linCF is not necessarily the same as nonlinCF rmeddis@38: minLinCF=153.13; coeffLinCF=0.7341; % linCF>nonlinBF for BF < 1 kHz rmeddis@38: DRNLParams.linCFs=minLinCF+coeffLinCF*BFlist; rmeddis@38: % bandwidths (linear) rmeddis@38: minLinBW=100; coeffLinBW=0.6531; rmeddis@38: DRNLParams.linBWs=minLinBW + coeffLinBW*BFlist; % bandwidths of linear filters rmeddis@38: rmeddis@38: % *** DRNL MOC efferents rmeddis@38: DRNLParams.MOCdelay = efferentDelay; % must be < segment length! rmeddis@38: DRNLParams.minMOCattenuationdB=-35; rmeddis@38: rmeddis@38: % 'spikes' model: MOC based on brainstem spiking activity (HSR) rmeddis@38: DRNLParams.MOCtau =.0285; % smoothing for MOC rmeddis@38: DRNLParams.rateToAttenuationFactor = .03; % strength of MOC rmeddis@38: DRNLParams.rateToAttenuationFactor = .0055; % strength of MOC rmeddis@38: rmeddis@38: % 'probability' model: MOC based on AN probability (HSR) rmeddis@38: DRNLParams.MOCtauProb =.285; % smoothing for MOC rmeddis@38: DRNLParams.rateToAttenuationFactorProb = 0.007; % strength of MOC rmeddis@38: DRNLParams.MOCrateThresholdProb =67; % spikes/s probability only rmeddis@38: rmeddis@38: rmeddis@38: %% #4 IHC_cilia_RPParams rmeddis@38: IHC_cilia_RPParams.tc= 0.00012; % 0.0003 Shamma rmeddis@38: IHC_cilia_RPParams.C= 0.08; % 0.1 scalar (C_cilia ) rmeddis@38: IHC_cilia_RPParams.u0= 5e-9; rmeddis@38: IHC_cilia_RPParams.s0= 30e-9; rmeddis@38: IHC_cilia_RPParams.u1= 1e-9; rmeddis@38: IHC_cilia_RPParams.s1= 1e-9; rmeddis@38: rmeddis@38: IHC_cilia_RPParams.Gmax= 6e-9; % 2.5e-9 maximum conductance (Siemens) rmeddis@38: IHC_cilia_RPParams.Ga= 1e-9; % 4.3e-9 fixed apical membrane conductance rmeddis@38: IHC_cilia_RPParams.Ga= .8e-9; % 4.3e-9 fixed apical membrane conductance rmeddis@38: rmeddis@38: % #5 IHC_RP rmeddis@38: IHC_cilia_RPParams.Cab= 4e-012; % IHC capacitance (F) rmeddis@38: % IHC_cilia_RPParams.Cab= 1e-012; % IHC capacitance (F) rmeddis@38: IHC_cilia_RPParams.Et= 0.100; % endocochlear potential (V) rmeddis@38: rmeddis@38: IHC_cilia_RPParams.Gk= 2e-008; % 1e-8 potassium conductance (S) rmeddis@38: IHC_cilia_RPParams.Ek= -0.08; % -0.084 K equilibrium potential rmeddis@38: IHC_cilia_RPParams.Rpc= 0.04; % combined resistances rmeddis@38: rmeddis@38: rmeddis@38: %% #5 IHCpreSynapse rmeddis@38: IHCpreSynapseParams=[]; rmeddis@38: IHCpreSynapseParams.GmaxCa= 14e-9;% maximum calcium conductance rmeddis@38: % IHCpreSynapseParams.GmaxCa= 12e-9;% maximum calcium conductance rmeddis@38: IHCpreSynapseParams.ECa= 0.066; % calcium equilibrium potential rmeddis@38: IHCpreSynapseParams.beta= 400; % determine Ca channel opening rmeddis@38: IHCpreSynapseParams.gamma= 100; % determine Ca channel opening rmeddis@38: IHCpreSynapseParams.tauM= 0.00005; % membrane time constant ?0.1ms rmeddis@38: IHCpreSynapseParams.power= 3; rmeddis@38: % reminder: changing z has a strong effect on HF thresholds (like Et) rmeddis@38: IHCpreSynapseParams.z= 2e42; % scalar Ca -> vesicle release rate rmeddis@38: rmeddis@38: LSRtauCa=30e-6; HSRtauCa=80e-6; % seconds rmeddis@38: % LSRtauCa=40e-6; HSRtauCa=90e-6; % seconds rmeddis@38: % IHCpreSynapseParams.tauCa= [15e-6 80e-6]; %LSR and HSR fiber rmeddis@38: IHCpreSynapseParams.tauCa= [LSRtauCa HSRtauCa]; %LSR and HSR fiber rmeddis@38: rmeddis@38: %% #6 AN_IHCsynapse rmeddis@38: AN_IHCsynapseParams=[]; % clear the structure first rmeddis@38: % number of AN fibers at each BF (used only for spike generation) rmeddis@38: AN_IHCsynapseParams.numFibers= 100; rmeddis@38: % absolute refractory period. Relative refractory period is the same. rmeddis@38: AN_IHCsynapseParams.refractory_period= 0.00075; rmeddis@38: AN_IHCsynapseParams.TWdelay=0.004; % ?delay before stimulus first spike rmeddis@38: AN_IHCsynapseParams.spikesTargetSampleRate=10000; rmeddis@38: % AN_IHCsynapseParams.ANspeedUpFactor=5; % longer epochs for computing spikes. rmeddis@38: rmeddis@38: % c=kym/(y(l+r)+kl) (spontaneous rate) rmeddis@38: % c=(approx) ym/l (saturated rate) rmeddis@38: AN_IHCsynapseParams.M= 12; % maximum vesicles at synapse rmeddis@38: AN_IHCsynapseParams.y= 4; % depleted vesicle replacement rate rmeddis@38: AN_IHCsynapseParams.y= 6; % depleted vesicle replacement rate rmeddis@38: rmeddis@38: AN_IHCsynapseParams.x= 30; % replenishment from re-uptake store rmeddis@38: AN_IHCsynapseParams.x= 60; % replenishment from re-uptake store rmeddis@38: rmeddis@38: % reduce l to increase saturated rate rmeddis@38: AN_IHCsynapseParams.l= 100; % *loss rate of vesicles from the cleft rmeddis@38: AN_IHCsynapseParams.l= 250; % *loss rate of vesicles from the cleft rmeddis@38: rmeddis@38: AN_IHCsynapseParams.r= 500; % *reuptake rate from cleft into cell rmeddis@38: % AN_IHCsynapseParams.r= 300; % *reuptake rate from cleft into cell rmeddis@38: rmeddis@38: rmeddis@38: %% #7 MacGregorMulti (first order brainstem neurons) rmeddis@38: MacGregorMultiParams=[]; rmeddis@38: MacGregorMultiType='chopper'; % MacGregorMultiType='primary-like'; %choose rmeddis@38: switch MacGregorMultiType rmeddis@38: case 'primary-like' rmeddis@38: MacGregorMultiParams.nNeuronsPerBF= 10; % N neurons per BF rmeddis@38: MacGregorMultiParams.type = 'primary-like cell'; rmeddis@38: MacGregorMultiParams.fibersPerNeuron=4; % N input fibers rmeddis@38: MacGregorMultiParams.dendriteLPfreq=200; % dendritic filter rmeddis@38: MacGregorMultiParams.currentPerSpike=0.11e-6; % (A) per spike rmeddis@38: MacGregorMultiParams.Cap=4.55e-9; % cell capacitance (Siemens) rmeddis@38: MacGregorMultiParams.tauM=5e-4; % membrane time constant (s) rmeddis@38: MacGregorMultiParams.Ek=-0.01; % K+ eq. potential (V) rmeddis@38: MacGregorMultiParams.dGkSpike=3.64e-5; % K+ cond.shift on spike,S rmeddis@38: MacGregorMultiParams.tauGk= 0.0012; % K+ conductance tau (s) rmeddis@38: MacGregorMultiParams.Th0= 0.01; % equilibrium threshold (V) rmeddis@38: MacGregorMultiParams.c= 0.01; % threshold shift on spike, (V) rmeddis@38: MacGregorMultiParams.tauTh= 0.015; % variable threshold tau rmeddis@38: MacGregorMultiParams.Er=-0.06; % resting potential (V) rmeddis@38: MacGregorMultiParams.Eb=0.06; % spike height (V) rmeddis@38: rmeddis@38: case 'chopper' rmeddis@38: MacGregorMultiParams.nNeuronsPerBF= 10; % N neurons per BF rmeddis@38: MacGregorMultiParams.type = 'chopper cell'; rmeddis@38: MacGregorMultiParams.fibersPerNeuron=10; % N input fibers rmeddis@38: rmeddis@38: MacGregorMultiParams.dendriteLPfreq=50; % dendritic filter rmeddis@38: MacGregorMultiParams.currentPerSpike=28e-9; % *per spike rmeddis@38: % MacGregorMultiParams.currentPerSpike=30e-9; % *per spike rmeddis@38: rmeddis@38: MacGregorMultiParams.Cap=1.67e-8; % ??cell capacitance (Siemens) rmeddis@38: MacGregorMultiParams.tauM=0.002; % membrane time constant (s) rmeddis@38: MacGregorMultiParams.Ek=-0.01; % K+ eq. potential (V) rmeddis@38: MacGregorMultiParams.dGkSpike=1.33e-4; % K+ cond.shift on spike,S rmeddis@38: MacGregorMultiParams.tauGk= 0.0005;% K+ conductance tau (s) rmeddis@38: MacGregorMultiParams.Th0= 0.01; % equilibrium threshold (V) rmeddis@38: MacGregorMultiParams.c= 0; % threshold shift on spike, (V) rmeddis@38: MacGregorMultiParams.tauTh= 0.02; % variable threshold tau rmeddis@38: MacGregorMultiParams.Er=-0.06; % resting potential (V) rmeddis@38: MacGregorMultiParams.Eb=0.06; % spike height (V) rmeddis@38: MacGregorMultiParams.PSTHbinWidth= 1e-4; rmeddis@38: end rmeddis@38: rmeddis@38: %% #8 MacGregor (second-order neuron). Only one per channel rmeddis@38: MacGregorParams=[]; % clear the structure first rmeddis@38: MacGregorParams.type = 'chopper cell'; rmeddis@38: MacGregorParams.fibersPerNeuron=10; % N input fibers rmeddis@38: MacGregorParams.dendriteLPfreq=100; % dendritic filter rmeddis@38: MacGregorParams.currentPerSpike=40e-9;% *(A) per spike rmeddis@38: rmeddis@38: MacGregorParams.Cap=16.7e-9; % cell capacitance (Siemens) rmeddis@38: MacGregorParams.tauM=0.002; % membrane time constant (s) rmeddis@38: MacGregorParams.Ek=-0.01; % K+ eq. potential (V) rmeddis@38: MacGregorParams.dGkSpike=1.33e-4; % K+ cond.shift on spike,S rmeddis@38: MacGregorParams.tauGk= 0.0012; % K+ conductance tau (s) rmeddis@38: MacGregorParams.Th0= 0.01; % equilibrium threshold (V) rmeddis@38: MacGregorParams.c= 0; % threshold shift on spike, (V) rmeddis@38: MacGregorParams.tauTh= 0.02; % variable threshold tau rmeddis@38: MacGregorParams.Er=-0.06; % resting potential (V) rmeddis@38: MacGregorParams.Eb=0.06; % spike height (V) rmeddis@38: MacGregorParams.debugging=0; % (special) rmeddis@38: % wideband accepts input from all channels (of same fiber type) rmeddis@38: % use wideband to create inhibitory units rmeddis@38: MacGregorParams.wideband=0; % special for wideband units rmeddis@38: % MacGregorParams.saveAllData=0; rmeddis@38: rmeddis@38: %% #9 filteredSACF rmeddis@38: minPitch= 300; maxPitch= 3000; numPitches=60; % specify lags rmeddis@38: pitches=100*log10(logspace(minPitch/100, maxPitch/100, numPitches)); rmeddis@38: filteredSACFParams.lags=1./pitches; % autocorrelation lags vector rmeddis@38: filteredSACFParams.acfTau= .003; % time constant of running ACF rmeddis@38: filteredSACFParams.lambda= 0.12; % slower filter to smooth ACF rmeddis@38: filteredSACFParams.plotFilteredSACF=1; % 0 plots unfiltered ACFs rmeddis@38: filteredSACFParams.plotACFs=0; % special plot (see code) rmeddis@38: % filteredSACFParams.usePressnitzer=0; % attenuates ACF at long lags rmeddis@38: filteredSACFParams.lagsProcedure= 'useAllLags'; rmeddis@38: % filteredSACFParams.lagsProcedure= 'omitShortLags'; rmeddis@38: filteredSACFParams.criterionForOmittingLags=3; rmeddis@38: rmeddis@38: % checks rmeddis@38: if AN_IHCsynapseParams.numFibers3 && ~isempty(paramChanges) rmeddis@38: if ~iscellstr(paramChanges) rmeddis@38: error('paramChanges error: paramChanges not a cell array') rmeddis@38: end rmeddis@38: rmeddis@38: nChanges=length(paramChanges); rmeddis@38: for idx=1:nChanges rmeddis@38: x=paramChanges{idx}; rmeddis@38: x=deblank(x); rmeddis@38: if ~isempty(x) rmeddis@38: if ~strcmp(x(end),';') rmeddis@38: error(['paramChanges error (terminate with semicolon) ' x]) rmeddis@38: end rmeddis@38: st=strtrim(x(1:strfind(x,'.')-1)); rmeddis@38: fld=strtrim(x(strfind(x,'.')+1:strfind(x,'=')-1)); rmeddis@38: value=x(strfind(x,'=')+1:end); rmeddis@38: if isempty(st) || isempty(fld) || isempty(value) rmeddis@38: error(['paramChanges error:' x]) rmeddis@38: end rmeddis@38: rmeddis@38: x1=eval(['isstruct(' st ')']); rmeddis@38: cmd=['isfield(' st ',''' fld ''')']; rmeddis@38: x2=eval(cmd); rmeddis@38: if ~(x1*x2) rmeddis@38: error(['paramChanges error:' x]) rmeddis@38: end rmeddis@38: end rmeddis@38: rmeddis@38: % no problems so go ahead rmeddis@38: eval(paramChanges{idx}) rmeddis@38: end rmeddis@38: end rmeddis@38: rmeddis@38: rmeddis@38: %% write all parameters to the command window rmeddis@38: % showParams is currently set at the top of htis function rmeddis@38: if showParams rmeddis@38: fprintf('\n %%%%%%%%\n') rmeddis@38: fprintf('\n%s\n', method.parameterSource) rmeddis@38: fprintf('\n') rmeddis@38: nm=UTIL_paramsList(whos); rmeddis@38: for i=1:length(nm) rmeddis@38: % eval(['UTIL_showStruct(' nm{i} ', ''' nm{i} ''')']) rmeddis@38: if ~strcmp(nm(i), 'method') rmeddis@38: eval(['UTIL_showStructureSummary(' nm{i} ', ''' nm{i} ''', 10)']) rmeddis@38: end rmeddis@38: end rmeddis@38: rmeddis@38: % highlight parameter changes made locally rmeddis@38: if nargin>3 && ~isempty(paramChanges) rmeddis@38: fprintf('\n Local parameter changes:\n') rmeddis@38: for i=1:length(paramChanges) rmeddis@38: disp(paramChanges{i}) rmeddis@38: end rmeddis@38: end rmeddis@38: end rmeddis@38: rmeddis@38: % for backward compatibility rmeddis@38: experiment.comparisonData=[];