rmeddis@30: function method=MAPparamsNormalIC ... rmeddis@30: (BFlist, sampleRate, showParams, paramChanges) rmeddis@30: % MAPparams<> establishes a complete set of MAP parameters rmeddis@30: % Parameter file names must be of the form rmeddis@30: % rmeddis@30: % input arguments rmeddis@30: % BFlist (optional) specifies the desired list of channel BFs rmeddis@30: % otherwise defaults set below rmeddis@30: % sampleRate (optional), default is 50000. rmeddis@30: % showParams (optional) =1 prints out the complete set of parameters rmeddis@30: % output argument rmeddis@30: % method passes a miscelleny of values rmeddis@30: rmeddis@30: global inputStimulusParams OMEParams DRNLParams IHC_cilia_RPParams rmeddis@30: global IHC_VResp_VivoParams IHCpreSynapseParams AN_IHCsynapseParams rmeddis@30: global MacGregorParams MacGregorMultiParams filteredSACFParams rmeddis@30: global experiment % used by calls from multiThreshold only rmeddis@30: rmeddis@30: rmeddis@30: currentFile=mfilename; % i.e. the name of this mfile rmeddis@30: method.parameterSource=currentFile(10:end); % for the record rmeddis@30: rmeddis@30: efferentDelay=0.010; rmeddis@30: method.segmentDuration=efferentDelay; rmeddis@30: rmeddis@30: if nargin<3, showParams=0; end rmeddis@30: if nargin<2, sampleRate=50000; end rmeddis@30: if nargin<1 || BFlist(1)<0 % if BFlist= -1, set BFlist to default rmeddis@30: lowestBF=250; highestBF= 8000; numChannels=21; rmeddis@30: % 21 chs (250-8k)includes BFs at 250 500 1000 2000 4000 8000 rmeddis@30: BFlist=round(logspace(log10(lowestBF),log10(highestBF),numChannels)); rmeddis@30: end rmeddis@30: % BFlist=1000; rmeddis@30: rmeddis@30: % preserve for backward campatibility rmeddis@30: method.nonlinCF=BFlist; rmeddis@30: method.dt=1/sampleRate; rmeddis@30: rmeddis@30: %%%%%%%%%%%%%%%%%%%%%%%%%%%% rmeddis@30: % set model parameters rmeddis@30: %%%%%%%%%%%%%%%%%%%%%%%%%%%% rmeddis@30: rmeddis@30: %% #1 inputStimulus rmeddis@30: inputStimulusParams=[]; rmeddis@30: inputStimulusParams.sampleRate= sampleRate; rmeddis@30: rmeddis@30: %% #2 outerMiddleEar rmeddis@30: OMEParams=[]; % clear the structure first rmeddis@30: % outer ear resonances band pass filter [gain lp order hp] rmeddis@30: OMEParams.externalResonanceFilters= [ 10 1 1000 4000]; rmeddis@30: rmeddis@30: % highpass stapes filter rmeddis@30: % Huber gives 2e-9 m at 80 dB and 1 kHz (2e-13 at 0 dB SPL) rmeddis@30: OMEParams.OMEstapesLPcutoff= 1000; rmeddis@30: OMEParams.stapesScalar= 45e-9; rmeddis@30: rmeddis@30: % Acoustic reflex: maximum attenuation should be around 25 dB Price (1966) rmeddis@30: % i.e. a minimum ratio of 0.056. rmeddis@30: % 'spikes' model: AR based on brainstem spiking activity (LSR) rmeddis@30: OMEParams.rateToAttenuationFactor=0.006; % * N(all ICspikes) rmeddis@30: % OMEParams.rateToAttenuationFactor=0; % * N(all ICspikes) rmeddis@30: rmeddis@30: % 'probability model': Ar based on AN firing probabilities (LSR) rmeddis@30: OMEParams.rateToAttenuationFactorProb=0.01;% * N(all ANrates) rmeddis@30: % OMEParams.rateToAttenuationFactorProb=0;% * N(all ANrates) rmeddis@30: rmeddis@30: % asymptote should be around 100-200 ms rmeddis@30: OMEParams.ARtau=.05; % AR smoothing function rmeddis@30: % delay must be longer than the segment length rmeddis@30: OMEParams.ARdelay=efferentDelay; %Moss gives 8.5 ms latency rmeddis@30: OMEParams.ARrateThreshold=0; rmeddis@30: rmeddis@30: %% #3 DRNL rmeddis@30: DRNLParams=[]; % clear the structure first rmeddis@30: DRNLParams.BFlist=BFlist; rmeddis@30: rmeddis@30: % DRNL nonlinear path rmeddis@30: DRNLParams.a=5e4; % DRNL.a=0 means no OHCs (no nonlinear path) rmeddis@30: DRNLParams.a=2e4; % DRNL.a=0 means no OHCs (no nonlinear path) rmeddis@30: rmeddis@30: DRNLParams.b=8e-6; % *compression threshold raised compression rmeddis@30: % DRNLParams.b=1; % b=1 means no compression rmeddis@30: rmeddis@30: DRNLParams.c=0.2; % compression exponent rmeddis@30: % nonlinear filters rmeddis@30: DRNLParams.nonlinCFs=BFlist; rmeddis@30: DRNLParams.nonlinOrder= 3; % order of nonlinear gammatone filters rmeddis@30: p=0.2895; q=170; % human (% p=0.14; q=366; % cat) rmeddis@30: DRNLParams.nlBWs= p * BFlist + q; rmeddis@30: DRNLParams.p=p; DRNLParams.q=q; % save p and q for printing only rmeddis@30: rmeddis@30: % DRNL linear path: rmeddis@30: DRNLParams.g=100; % linear path gain factor rmeddis@30: % linCF is not necessarily the same as nonlinCF rmeddis@30: minLinCF=153.13; coeffLinCF=0.7341; % linCF>nonlinBF for BF < 1 kHz rmeddis@30: DRNLParams.linCFs=minLinCF+coeffLinCF*BFlist; rmeddis@30: DRNLParams.linOrder= 3; % order of linear gammatone filters rmeddis@30: minLinBW=100; coeffLinBW=0.6531; rmeddis@30: DRNLParams.linBWs=minLinBW + coeffLinBW*BFlist; % bandwidths of linear filters rmeddis@30: rmeddis@30: % DRNL MOC efferents rmeddis@30: DRNLParams.MOCdelay = efferentDelay; % must be < segment length! rmeddis@30: rmeddis@30: % 'spikes' model: MOC based on brainstem spiking activity (HSR) rmeddis@30: DRNLParams.rateToAttenuationFactor = .01; % strength of MOC rmeddis@30: % DRNLParams.rateToAttenuationFactor = 0; % strength of MOC rmeddis@30: % 'probability' model: MOC based on AN spiking activity (HSR) rmeddis@30: DRNLParams.rateToAttenuationFactorProb = .0055; % strength of MOC rmeddis@30: % DRNLParams.rateToAttenuationFactorProb = .0; % strength of MOC rmeddis@30: DRNLParams.MOCrateThresholdProb =70; % spikes/s probability only rmeddis@30: rmeddis@30: DRNLParams.MOCtau =.1; % smoothing for MOC rmeddis@30: rmeddis@30: rmeddis@30: %% #4 IHC_cilia_RPParams rmeddis@30: rmeddis@30: IHC_cilia_RPParams.tc= 0.0003; % 0.0003 filter time simulates viscocity rmeddis@30: % IHC_cilia_RPParams.tc= 0.0005; % 0.0003 filter time simulates viscocity rmeddis@30: IHC_cilia_RPParams.C= 0.03; % 0.1 scalar (C_cilia ) rmeddis@30: IHC_cilia_RPParams.u0= 5e-9; rmeddis@30: IHC_cilia_RPParams.s0= 30e-9; rmeddis@30: IHC_cilia_RPParams.u1= 1e-9; rmeddis@30: IHC_cilia_RPParams.s1= 1e-9; rmeddis@30: rmeddis@30: IHC_cilia_RPParams.Gmax= 6e-9; % 2.5e-9 maximum conductance (Siemens) rmeddis@30: IHC_cilia_RPParams.Ga= 1e-9; % 4.3e-9 fixed apical membrane conductance rmeddis@30: IHC_cilia_RPParams.Ga= .8e-9; % 4.3e-9 fixed apical membrane conductance rmeddis@30: rmeddis@30: % #5 IHC_RP rmeddis@30: IHC_cilia_RPParams.Cab= 4e-012; % IHC capacitance (F) rmeddis@30: % IHC_cilia_RPParams.Cab= 1e-012; % IHC capacitance (F) rmeddis@30: IHC_cilia_RPParams.Et= 0.100; % endocochlear potential (V) rmeddis@30: rmeddis@30: IHC_cilia_RPParams.Gk= 2e-008; % 1e-8 potassium conductance (S) rmeddis@30: IHC_cilia_RPParams.Ek= -0.08; % -0.084 K equilibrium potential rmeddis@30: IHC_cilia_RPParams.Rpc= 0.04; % combined resistances rmeddis@30: rmeddis@30: rmeddis@30: %% #5 IHCpreSynapse rmeddis@30: IHCpreSynapseParams=[]; rmeddis@30: IHCpreSynapseParams.GmaxCa= 14e-9;% maximum calcium conductance rmeddis@30: IHCpreSynapseParams.GmaxCa= 12e-9;% maximum calcium conductance rmeddis@30: IHCpreSynapseParams.ECa= 0.066; % calcium equilibrium potential rmeddis@30: IHCpreSynapseParams.beta= 400; % determine Ca channel opening rmeddis@30: IHCpreSynapseParams.gamma= 100; % determine Ca channel opening rmeddis@30: IHCpreSynapseParams.tauM= 0.00005; % membrane time constant ?0.1ms rmeddis@30: IHCpreSynapseParams.power= 3; rmeddis@30: % reminder: changing z has a strong effect on HF thresholds (like Et) rmeddis@30: IHCpreSynapseParams.z= 2e42; % scalar Ca -> vesicle release rate rmeddis@30: rmeddis@30: LSRtauCa=35e-6; HSRtauCa=85e-6; % seconds rmeddis@30: % LSRtauCa=35e-6; HSRtauCa=70e-6; % seconds rmeddis@30: IHCpreSynapseParams.tauCa= [ HSRtauCa]; %LSR and HSR fiber rmeddis@30: rmeddis@30: %% #6 AN_IHCsynapse rmeddis@30: % c=kym/(y(l+r)+kl) (spontaneous rate) rmeddis@30: % c=(approx) ym/l (saturated rate) rmeddis@30: AN_IHCsynapseParams=[]; % clear the structure first rmeddis@30: AN_IHCsynapseParams.M= 12; % maximum vesicles at synapse rmeddis@30: AN_IHCsynapseParams.y= 4; % depleted vesicle replacement rate rmeddis@30: AN_IHCsynapseParams.y= 6; % depleted vesicle replacement rate rmeddis@30: rmeddis@30: AN_IHCsynapseParams.x= 30; % replenishment from re-uptake store rmeddis@30: AN_IHCsynapseParams.x= 60; % replenishment from re-uptake store rmeddis@30: rmeddis@30: % reduce l to increase saturated rate rmeddis@30: AN_IHCsynapseParams.l= 100; % *loss rate of vesicles from the cleft rmeddis@30: AN_IHCsynapseParams.l= 250; % *loss rate of vesicles from the cleft rmeddis@30: rmeddis@30: AN_IHCsynapseParams.r= 500; % *reuptake rate from cleft into cell rmeddis@30: % AN_IHCsynapseParams.r= 300; % *reuptake rate from cleft into cell rmeddis@30: rmeddis@30: AN_IHCsynapseParams.refractory_period= 0.00075; rmeddis@30: % number of AN fibers at each BF (used only for spike generation) rmeddis@30: AN_IHCsynapseParams.numFibers= 100; rmeddis@30: AN_IHCsynapseParams.TWdelay=0.004; % ?delay before stimulus first spike rmeddis@30: rmeddis@30: AN_IHCsynapseParams.ANspeedUpFactor=5; % longer epochs for computing spikes. rmeddis@30: rmeddis@30: %% #7 MacGregorMulti (first order brainstem neurons) rmeddis@30: MacGregorMultiParams=[]; rmeddis@30: MacGregorMultiType='chopper'; % MacGregorMultiType='primary-like'; %choose rmeddis@30: switch MacGregorMultiType rmeddis@30: case 'primary-like' rmeddis@30: MacGregorMultiParams.nNeuronsPerBF= 10; % N neurons per BF rmeddis@30: MacGregorMultiParams.type = 'primary-like cell'; rmeddis@30: MacGregorMultiParams.fibersPerNeuron=4; % N input fibers rmeddis@30: MacGregorMultiParams.dendriteLPfreq=200; % dendritic filter rmeddis@30: MacGregorMultiParams.currentPerSpike=0.11e-6; % (A) per spike rmeddis@30: MacGregorMultiParams.Cap=4.55e-9; % cell capacitance (Siemens) rmeddis@30: MacGregorMultiParams.tauM=5e-4; % membrane time constant (s) rmeddis@30: MacGregorMultiParams.Ek=-0.01; % K+ eq. potential (V) rmeddis@30: MacGregorMultiParams.dGkSpike=3.64e-5; % K+ cond.shift on spike,S rmeddis@30: MacGregorMultiParams.tauGk= 0.0012; % K+ conductance tau (s) rmeddis@30: MacGregorMultiParams.Th0= 0.01; % equilibrium threshold (V) rmeddis@30: MacGregorMultiParams.c= 0.01; % threshold shift on spike, (V) rmeddis@30: MacGregorMultiParams.tauTh= 0.015; % variable threshold tau rmeddis@30: MacGregorMultiParams.Er=-0.06; % resting potential (V) rmeddis@30: MacGregorMultiParams.Eb=0.06; % spike height (V) rmeddis@30: rmeddis@30: case 'chopper' rmeddis@30: MacGregorMultiParams.nNeuronsPerBF= 10; % N neurons per BF rmeddis@30: MacGregorMultiParams.type = 'chopper cell'; rmeddis@30: MacGregorMultiParams.fibersPerNeuron=10; % N input fibers rmeddis@30: % MacGregorMultiParams.fibersPerNeuron=6; % N input fibers rmeddis@30: rmeddis@30: MacGregorMultiParams.dendriteLPfreq=50; % dendritic filter rmeddis@30: MacGregorMultiParams.currentPerSpike=35e-9; % *per spike rmeddis@30: % MacGregorMultiParams.currentPerSpike=30e-9; % *per spike rmeddis@30: rmeddis@30: MacGregorMultiParams.Cap=1.67e-8; % ??cell capacitance (Siemens) rmeddis@30: MacGregorMultiParams.tauM=0.002; % membrane time constant (s) rmeddis@30: MacGregorMultiParams.Ek=-0.01; % K+ eq. potential (V) rmeddis@30: MacGregorMultiParams.dGkSpike=1.33e-4; % K+ cond.shift on spike,S rmeddis@30: MacGregorMultiParams.tauGk= [0.001 0.0005];% K+ conductance tau (s) rmeddis@30: MacGregorMultiParams.Th0= 0.01; % equilibrium threshold (V) rmeddis@30: MacGregorMultiParams.c= 0; % threshold shift on spike, (V) rmeddis@30: MacGregorMultiParams.tauTh= 0.02; % variable threshold tau rmeddis@30: MacGregorMultiParams.Er=-0.06; % resting potential (V) rmeddis@30: MacGregorMultiParams.Eb=0.06; % spike height (V) rmeddis@30: MacGregorMultiParams.PSTHbinWidth= 1e-4; rmeddis@30: end rmeddis@30: rmeddis@30: %% #8 MacGregor (second-order neuron). Only one per channel rmeddis@30: MacGregorParams=[]; % clear the structure first rmeddis@30: MacGregorParams.type = 'chopper cell'; rmeddis@30: MacGregorParams.fibersPerNeuron=10; % N input fibers rmeddis@30: MacGregorParams.dendriteLPfreq=100; % dendritic filter rmeddis@30: MacGregorParams.currentPerSpike=120e-9;% *(A) per spike rmeddis@30: MacGregorParams.currentPerSpike=40e-9;% *(A) per spike rmeddis@30: rmeddis@30: MacGregorParams.Cap=16.7e-9; % cell capacitance (Siemens) rmeddis@30: MacGregorParams.tauM=0.002; % membrane time constant (s) rmeddis@30: MacGregorParams.Ek=-0.01; % K+ eq. potential (V) rmeddis@30: MacGregorParams.dGkSpike=1.33e-4; % K+ cond.shift on spike,S rmeddis@30: MacGregorParams.tauGk= 0.0005; % K+ conductance tau (s) rmeddis@30: MacGregorParams.Th0= 0.01; % equilibrium threshold (V) rmeddis@30: MacGregorParams.c= 0; % threshold shift on spike, (V) rmeddis@30: MacGregorParams.tauTh= 0.02; % variable threshold tau rmeddis@30: MacGregorParams.Er=-0.06; % resting potential (V) rmeddis@30: MacGregorParams.Eb=0.06; % spike height (V) rmeddis@30: MacGregorParams.debugging=0; % (special) rmeddis@30: % wideband accepts input from all channels (of same fiber type) rmeddis@30: % use wideband to create inhibitory units rmeddis@30: MacGregorParams.wideband=0; % special for wideband units rmeddis@30: % MacGregorParams.saveAllData=0; rmeddis@30: rmeddis@30: %% #9 filteredSACF rmeddis@30: minPitch= 300; maxPitch= 3000; numPitches=60; % specify lags rmeddis@30: pitches=100*log10(logspace(minPitch/100, maxPitch/100, numPitches)); rmeddis@30: filteredSACFParams.lags=1./pitches; % autocorrelation lags vector rmeddis@30: filteredSACFParams.acfTau= .003; % time constant of running ACF rmeddis@30: filteredSACFParams.lambda= 0.12; % slower filter to smooth ACF rmeddis@30: filteredSACFParams.plotFilteredSACF=1; % 0 plots unfiltered ACFs rmeddis@30: filteredSACFParams.plotACFs=0; % special plot (see code) rmeddis@30: % filteredSACFParams.usePressnitzer=0; % attenuates ACF at long lags rmeddis@30: filteredSACFParams.lagsProcedure= 'useAllLags'; rmeddis@30: % filteredSACFParams.lagsProcedure= 'useBernsteinLagWeights'; rmeddis@30: % filteredSACFParams.lagsProcedure= 'omitShortLags'; rmeddis@30: filteredSACFParams.criterionForOmittingLags=3; rmeddis@30: rmeddis@30: % checks rmeddis@30: if AN_IHCsynapseParams.numFibers3 && ~isempty(paramChanges) rmeddis@30: nChanges=length(paramChanges); rmeddis@30: for idx=1:nChanges rmeddis@30: eval(paramChanges{idx}) rmeddis@30: end rmeddis@30: end rmeddis@30: rmeddis@30: rmeddis@30: %% write all parameters to the command window rmeddis@30: % showParams is currently set at the top of htis function rmeddis@30: if showParams rmeddis@30: fprintf('\n %%%%%%%%\n') rmeddis@30: fprintf('\n%s\n', method.parameterSource) rmeddis@30: fprintf('\n') rmeddis@30: nm=UTIL_paramsList(whos); rmeddis@30: for i=1:length(nm) rmeddis@30: % eval(['UTIL_showStruct(' nm{i} ', ''' nm{i} ''')']) rmeddis@30: if ~strcmp(nm(i), 'method') rmeddis@30: eval(['UTIL_showStructureSummary(' nm{i} ', ''' nm{i} ''', 10)']) rmeddis@30: end rmeddis@30: end rmeddis@30: rmeddis@30: % highlight parameter changes made locally rmeddis@30: if nargin>3 && ~isempty(paramChanges) rmeddis@30: fprintf('\n Local parameter changes:\n') rmeddis@30: for i=1:length(paramChanges) rmeddis@30: disp(paramChanges{i}) rmeddis@30: end rmeddis@30: end rmeddis@30: end rmeddis@30: rmeddis@30: % for backward compatibility rmeddis@30: experiment.comparisonData=[];