rmeddis@10: function method=MAPparamsStd ... rmeddis@10: (BFlist, sampleRate, showParams) rmeddis@10: % MAPparams<> establishes a complete set of MAP parameters rmeddis@10: % Parameter file names must be of the form rmeddis@10: % rmeddis@10: % input arguments rmeddis@10: % BFlist (optional) specifies the desired list of channel BFs rmeddis@10: % otherwise defaults set below rmeddis@10: % sampleRate (optional), default is 50000. rmeddis@10: % showParams (optional) =1 prints out the complete set of parameters rmeddis@10: % output argument rmeddis@10: % method passes a miscelleny of values rmeddis@10: rmeddis@10: global inputStimulusParams OMEParams DRNLParams rmeddis@10: global IHC_VResp_VivoParams IHCpreSynapseParams AN_IHCsynapseParams rmeddis@10: global MacGregorParams MacGregorMultiParams filteredSACFParams rmeddis@10: global experiment % used by calls from multiThreshold only rmeddis@10: global IHC_cilia_RPParams rmeddis@10: rmeddis@10: currentFile=mfilename; % i.e. the name of this mfile rmeddis@10: method.parameterSource=currentFile(10:end); % for the record rmeddis@10: rmeddis@10: switchOffEfferent=0; rmeddis@10: efferentDelay=0.010; rmeddis@10: method.segmentDuration=efferentDelay; rmeddis@10: rmeddis@10: if nargin<3, showParams=0; end rmeddis@10: if nargin<2, sampleRate=50000; end rmeddis@10: if nargin<1 || BFlist(1)<0 % if BFlist= -1, set BFlist to default rmeddis@10: lowestBF=250; highestBF= 8000; numChannels=21; rmeddis@10: % 21 chs (250-8k)includes BFs at 250 500 1000 2000 4000 8000 rmeddis@10: BFlist=round(logspace(log10(lowestBF),log10(highestBF),numChannels)); rmeddis@10: end rmeddis@10: % BFlist=1000; rmeddis@10: rmeddis@10: % preserve for backward campatibility rmeddis@10: method.nonlinCF=BFlist; rmeddis@10: method.dt=1/sampleRate; rmeddis@10: rmeddis@10: %%%%%%%%%%%%%%%%%%%%%%%%%%%% rmeddis@10: % set model parameters rmeddis@10: %%%%%%%%%%%%%%%%%%%%%%%%%%%% rmeddis@10: rmeddis@10: %% #1 inputStimulus rmeddis@10: inputStimulusParams=[]; rmeddis@10: inputStimulusParams.sampleRate= sampleRate; rmeddis@10: rmeddis@10: %% #2 outerMiddleEar rmeddis@10: OMEParams=[]; % clear the structure first rmeddis@10: % outer ear resonances band pass filter [gain lp order hp] rmeddis@10: OMEParams.externalResonanceFilters= [ 10 1 1000 4000]; rmeddis@10: rmeddis@10: % highpass stapes filter rmeddis@10: % Huber gives 2e-9 m at 80 dB and 1 kHz (2e-13 at 0 dB SPL) rmeddis@10: OMEParams.OMEstapesLPcutoff= 1000; rmeddis@10: OMEParams.stapesScalar= 45e-9; rmeddis@10: rmeddis@10: % Acoustic reflex: maximum attenuation should be around 25 dB Price (1966) rmeddis@10: % i.e. a minimum ratio of 0.056. rmeddis@10: if ~switchOffEfferent rmeddis@10: % 'spikes' model: AR based on brainstem spiking activity (LSR) rmeddis@10: OMEParams.rateToAttenuationFactor=0.003; % * N(all ICspikes) rmeddis@10: % OMEParams.rateToAttenuationFactor=0; % * N(all ICspikes) rmeddis@10: % 'probability model': Ar based on An firing probabilities (LSR) rmeddis@10: OMEParams.rateToAttenuationFactorProb=0.005;% * N(all ANrates) rmeddis@10: % OMEParams.rateToAttenuationFactorProb=0;% * N(all ANrates) rmeddis@10: else rmeddis@10: OMEParams.rateToAttenuationFactor=0; % 0= off rmeddis@10: OMEParams.rateToAttenuationFactorProb=0; % 0= off rmeddis@10: end rmeddis@10: % asymptote should be around 100-200 ms rmeddis@10: OMEParams.ARtau=.05; % AR smoothing function rmeddis@10: % delay must be longer than the segment length rmeddis@10: OMEParams.ARdelay=efferentDelay; %Moss gives 8.5 ms latency rmeddis@10: OMEParams.ARrateThreshold=0; rmeddis@10: rmeddis@10: %% #3 DRNL rmeddis@10: DRNLParams=[]; % clear the structure first rmeddis@10: DRNLParams.BFlist=BFlist; rmeddis@10: rmeddis@10: % DRNL nonlinear path rmeddis@10: DRNLParams.a=3e4; % nonlinear path gain (below compression threshold) rmeddis@10: % DRNLParams.a=3e2; % DRNL.a=0 means no OHCs (no nonlinear path) rmeddis@10: rmeddis@10: DRNLParams.b=8e-6; % *compression threshold raised compression rmeddis@10: % DRNLParams.b=1; % b=1 means no compression rmeddis@10: rmeddis@10: DRNLParams.c=0.2; % compression exponent rmeddis@10: % nonlinear filters rmeddis@10: DRNLParams.nonlinCFs=BFlist; rmeddis@10: DRNLParams.nonlinOrder= 3; % order of nonlinear gammatone filters rmeddis@10: p=0.2895; q=170; % human (% p=0.14; q=366; % cat) rmeddis@10: DRNLParams.nlBWs= p * BFlist + q; rmeddis@10: DRNLParams.p=p; DRNLParams.q=q; % save p and q for printing only rmeddis@10: rmeddis@10: % DRNL linear path: rmeddis@10: DRNLParams.g=100; % linear path gain factor rmeddis@10: % linCF is not necessarily the same as nonlinCF rmeddis@10: minLinCF=153.13; coeffLinCF=0.7341; % linCF>nonlinBF for BF < 1 kHz rmeddis@10: DRNLParams.linCFs=minLinCF+coeffLinCF*BFlist; rmeddis@10: DRNLParams.linOrder= 3; % order of linear gammatone filters rmeddis@10: minLinBW=100; coeffLinBW=0.6531; rmeddis@10: DRNLParams.linBWs=minLinBW + coeffLinBW*BFlist; % bandwidths of linear filters rmeddis@10: rmeddis@10: % DRNL MOC efferents rmeddis@10: DRNLParams.MOCdelay = efferentDelay; % must be < segment length! rmeddis@10: if ~switchOffEfferent rmeddis@10: % 'spikes' model: MOC based on brainstem spiking activity (HSR) rmeddis@10: DRNLParams.rateToAttenuationFactor = .009; % strength of MOC rmeddis@10: DRNLParams.rateToAttenuationFactor = .009; % strength of MOC rmeddis@10: % DRNLParams.rateToAttenuationFactor = 0; % strength of MOC rmeddis@10: rmeddis@10: % 'spikes' model: MOC based on brainstem spiking activity (HSR) rmeddis@10: DRNLParams.rateToAttenuationFactorProb = .002; % strength of MOC rmeddis@10: else rmeddis@10: DRNLParams.rateToAttenuationFactor = 0; % 0 = MOC off (probability) rmeddis@10: DRNLParams.rateToAttenuationFactorProb = 0; % 0 = MOC off (spikes) rmeddis@10: end rmeddis@10: DRNLParams.MOCtau =.03; % smoothing for MOC rmeddis@10: DRNLParams.MOCrateThreshold =50; % set to AN rate threshold rmeddis@10: rmeddis@10: rmeddis@10: %% #4 IHC_cilia_RPParams rmeddis@10: rmeddis@10: IHC_cilia_RPParams.tc= 0.0003; % 0.0003 filter time simulates viscocity rmeddis@10: % IHC_cilia_RPParams.tc= 0.0005; % 0.0003 filter time simulates viscocity rmeddis@10: IHC_cilia_RPParams.C= 0.05; % 0.1 scalar (C_cilia ) rmeddis@10: IHC_cilia_RPParams.u0= 5e-9; rmeddis@10: IHC_cilia_RPParams.s0= 30e-9; rmeddis@10: IHC_cilia_RPParams.u1= 1e-9; rmeddis@10: IHC_cilia_RPParams.s1= 1e-9; rmeddis@10: rmeddis@10: IHC_cilia_RPParams.Gmax= 5e-9; % 2.5e-9 maximum conductance (Siemens) rmeddis@10: IHC_cilia_RPParams.Ga= 1e-9; % 4.3e-9 fixed apical membrane conductance rmeddis@10: rmeddis@10: % #5 IHC_RP rmeddis@10: IHC_cilia_RPParams.Cab= 4e-012; % IHC capacitance (F) rmeddis@10: IHC_cilia_RPParams.Cab= 1e-012; % IHC capacitance (F) rmeddis@10: IHC_cilia_RPParams.Et= 0.100; % endocochlear potential (V) rmeddis@10: % IHC_cilia_RPParams.Et= 0.07; % endocochlear potential (V) rmeddis@10: rmeddis@10: IHC_cilia_RPParams.Gk= 2e-008; % 1e-8 potassium conductance (S) rmeddis@10: IHC_cilia_RPParams.Ek= -0.08; % -0.084 K equilibrium potential rmeddis@10: IHC_cilia_RPParams.Rpc= 0.04; % combined resistances rmeddis@10: rmeddis@10: rmeddis@10: %% #5 IHCpreSynapse rmeddis@10: IHCpreSynapseParams=[]; rmeddis@10: IHCpreSynapseParams.GmaxCa= 14e-9;% maximum calcium conductance rmeddis@10: IHCpreSynapseParams.GmaxCa= 12e-9;% maximum calcium conductance rmeddis@10: IHCpreSynapseParams.ECa= 0.066; % calcium equilibrium potential rmeddis@10: IHCpreSynapseParams.beta= 400; % determine Ca channel opening rmeddis@10: IHCpreSynapseParams.gamma= 100; % determine Ca channel opening rmeddis@10: IHCpreSynapseParams.tauM= 0.00005; % membrane time constant ?0.1ms rmeddis@10: IHCpreSynapseParams.power= 3; rmeddis@10: % reminder: changing z has a strong effect on HF thresholds (like Et) rmeddis@10: IHCpreSynapseParams.z= 2e42; % scalar Ca -> vesicle release rate rmeddis@10: rmeddis@10: LSRtauCa=50e-6; HSRtauCa=85e-6; % seconds rmeddis@10: % LSRtauCa=35e-6; HSRtauCa=70e-6; % seconds rmeddis@10: IHCpreSynapseParams.tauCa= [LSRtauCa HSRtauCa]; %LSR and HSR fiber rmeddis@10: rmeddis@10: %% #6 AN_IHCsynapse rmeddis@10: % c=kym/(y(l+r)+kl) (spontaneous rate) rmeddis@10: % c=(approx) ym/l (saturated rate) rmeddis@10: AN_IHCsynapseParams=[]; % clear the structure first rmeddis@10: AN_IHCsynapseParams.M= 12; % maximum vesicles at synapse rmeddis@10: AN_IHCsynapseParams.y= 4; % depleted vesicle replacement rate rmeddis@10: AN_IHCsynapseParams.y= 6; % depleted vesicle replacement rate rmeddis@10: rmeddis@10: AN_IHCsynapseParams.x= 30; % replenishment from re-uptake store rmeddis@10: AN_IHCsynapseParams.x= 60; % replenishment from re-uptake store rmeddis@10: rmeddis@10: % reduce l to increase saturated rate rmeddis@10: AN_IHCsynapseParams.l= 100; % *loss rate of vesicles from the cleft rmeddis@10: AN_IHCsynapseParams.l= 250; % *loss rate of vesicles from the cleft rmeddis@10: rmeddis@10: AN_IHCsynapseParams.r= 500; % *reuptake rate from cleft into cell rmeddis@10: % AN_IHCsynapseParams.r= 300; % *reuptake rate from cleft into cell rmeddis@10: rmeddis@10: AN_IHCsynapseParams.refractory_period= 0.00075; rmeddis@10: % number of AN fibers at each BF (used only for spike generation) rmeddis@10: AN_IHCsynapseParams.numFibers= 100; rmeddis@10: AN_IHCsynapseParams.TWdelay=0.004; % ?delay before stimulus first spike rmeddis@10: rmeddis@10: %% #7 MacGregorMulti (first order brainstem neurons) rmeddis@10: MacGregorMultiParams=[]; rmeddis@10: MacGregorMultiType='chopper'; % MacGregorMultiType='primary-like'; %choose rmeddis@10: switch MacGregorMultiType rmeddis@10: case 'primary-like' rmeddis@10: MacGregorMultiParams.nNeuronsPerBF= 10; % N neurons per BF rmeddis@10: MacGregorMultiParams.type = 'primary-like cell'; rmeddis@10: MacGregorMultiParams.fibersPerNeuron=4; % N input fibers rmeddis@10: MacGregorMultiParams.dendriteLPfreq=200; % dendritic filter rmeddis@10: MacGregorMultiParams.currentPerSpike=0.11e-6; % (A) per spike rmeddis@10: MacGregorMultiParams.Cap=4.55e-9; % cell capacitance (Siemens) rmeddis@10: MacGregorMultiParams.tauM=5e-4; % membrane time constant (s) rmeddis@10: MacGregorMultiParams.Ek=-0.01; % K+ eq. potential (V) rmeddis@10: MacGregorMultiParams.dGkSpike=3.64e-5; % K+ cond.shift on spike,S rmeddis@10: MacGregorMultiParams.tauGk= 0.0012; % K+ conductance tau (s) rmeddis@10: MacGregorMultiParams.Th0= 0.01; % equilibrium threshold (V) rmeddis@10: MacGregorMultiParams.c= 0.01; % threshold shift on spike, (V) rmeddis@10: MacGregorMultiParams.tauTh= 0.015; % variable threshold tau rmeddis@10: MacGregorMultiParams.Er=-0.06; % resting potential (V) rmeddis@10: MacGregorMultiParams.Eb=0.06; % spike height (V) rmeddis@10: rmeddis@10: case 'chopper' rmeddis@10: MacGregorMultiParams.nNeuronsPerBF= 10; % N neurons per BF rmeddis@10: MacGregorMultiParams.type = 'chopper cell'; rmeddis@10: MacGregorMultiParams.fibersPerNeuron=10; % N input fibers rmeddis@10: % MacGregorMultiParams.fibersPerNeuron=6; % N input fibers rmeddis@10: rmeddis@10: MacGregorMultiParams.dendriteLPfreq=50; % dendritic filter rmeddis@10: MacGregorMultiParams.currentPerSpike=35e-9; % *per spike rmeddis@10: % MacGregorMultiParams.currentPerSpike=45e-9; % *per spike rmeddis@10: rmeddis@10: MacGregorMultiParams.Cap=1.67e-8; % ??cell capacitance (Siemens) rmeddis@10: MacGregorMultiParams.tauM=0.002; % membrane time constant (s) rmeddis@10: MacGregorMultiParams.Ek=-0.01; % K+ eq. potential (V) rmeddis@10: MacGregorMultiParams.dGkSpike=1.33e-4; % K+ cond.shift on spike,S rmeddis@10: MacGregorMultiParams.tauGk= 0.0001;% K+ conductance tau (s) rmeddis@10: MacGregorMultiParams.Th0= 0.01; % equilibrium threshold (V) rmeddis@10: MacGregorMultiParams.c= 0; % threshold shift on spike, (V) rmeddis@10: MacGregorMultiParams.tauTh= 0.02; % variable threshold tau rmeddis@10: MacGregorMultiParams.Er=-0.06; % resting potential (V) rmeddis@10: MacGregorMultiParams.Eb=0.06; % spike height (V) rmeddis@10: MacGregorMultiParams.PSTHbinWidth= 1e-4; rmeddis@10: end rmeddis@10: rmeddis@10: %% #8 MacGregor (second-order neuron). Only one per channel rmeddis@10: MacGregorParams=[]; % clear the structure first rmeddis@10: MacGregorParams.type = 'chopper cell'; rmeddis@10: MacGregorParams.fibersPerNeuron=10; % N input fibers rmeddis@10: MacGregorParams.dendriteLPfreq=100; % dendritic filter rmeddis@10: MacGregorParams.currentPerSpike=120e-9;% *(A) per spike rmeddis@10: rmeddis@10: MacGregorParams.Cap=16.7e-9; % cell capacitance (Siemens) rmeddis@10: MacGregorParams.tauM=0.002; % membrane time constant (s) rmeddis@10: MacGregorParams.Ek=-0.01; % K+ eq. potential (V) rmeddis@10: MacGregorParams.dGkSpike=1.33e-4; % K+ cond.shift on spike,S rmeddis@10: MacGregorParams.tauGk= 0.0003; % K+ conductance tau (s) rmeddis@10: MacGregorParams.Th0= 0.01; % equilibrium threshold (V) rmeddis@10: MacGregorParams.c= 0; % threshold shift on spike, (V) rmeddis@10: MacGregorParams.tauTh= 0.02; % variable threshold tau rmeddis@10: MacGregorParams.Er=-0.06; % resting potential (V) rmeddis@10: MacGregorParams.Eb=0.06; % spike height (V) rmeddis@10: MacGregorParams.debugging=0; % (special) rmeddis@10: % wideband accepts input from all channels (of same fiber type) rmeddis@10: % use wideband to create inhibitory units rmeddis@10: MacGregorParams.wideband=0; % special for wideband units rmeddis@10: % MacGregorParams.saveAllData=0; rmeddis@10: rmeddis@10: %% #9 filteredSACF rmeddis@10: minPitch= 300; maxPitch= 3000; numPitches=60; % specify lags rmeddis@10: pitches=100*log10(logspace(minPitch/100, maxPitch/100, numPitches)); rmeddis@10: filteredSACFParams.lags=1./pitches; % autocorrelation lags vector rmeddis@10: filteredSACFParams.acfTau= .003; % time constant of running ACF rmeddis@10: filteredSACFParams.lambda= 0.12; % slower filter to smooth ACF rmeddis@10: filteredSACFParams.plotFilteredSACF=1; % 0 plots unfiltered ACFs rmeddis@10: filteredSACFParams.plotACFs=0; % special plot (see code) rmeddis@10: % filteredSACFParams.usePressnitzer=0; % attenuates ACF at long lags rmeddis@10: filteredSACFParams.lagsProcedure= 'useAllLags'; rmeddis@10: % filteredSACFParams.lagsProcedure= 'useBernsteinLagWeights'; rmeddis@10: % filteredSACFParams.lagsProcedure= 'omitShortLags'; rmeddis@10: filteredSACFParams.criterionForOmittingLags=3; rmeddis@10: rmeddis@10: % checks rmeddis@10: if AN_IHCsynapseParams.numFibers