Mercurial > hg > map
view userProgramsTim/track_formants_from_IPI_guy.m @ 38:c2204b18f4a2 tip
End nov big change
author | Ray Meddis <rmeddis@essex.ac.uk> |
---|---|
date | Mon, 28 Nov 2011 13:34:28 +0000 |
parents | |
children |
line wrap: on
line source
function [iih,IPIhisttime,IPIhistweight]=track_formants_from_IPI_guy(IFRAN_pattern, sfreq) % % tracks the formants according to an analysis proposed in Secker-Walker % JASA 1990, section V.A % Tim Jürgens, February 2011, code from Guy Brown included % % input: IFRAN_pattern: pattern of the auditory model (dependend on the number of modules used) % first dimension: frequency channel, % second dimension: time (samples) % sfreq: sampling frequency % output: iih: interpeak-interval histogram, matrix very similar % the plot 5 in the Secker-Walker paper % % % time_axis = 0:1/sfreq:(size(IFRAN_pattern,2)-1)/sfreq; %find how many samples of AN_pattern are 10ms and 3ms %one_sample_is_a_time_of = time_axis(2); [tmp, start_time_index] = min(abs(0-time_axis)); [tmp, stop10_time_index] = min(abs(0.01-time_axis)); number_of_samples10ms = stop10_time_index - start_time_index; [tmp, stop3_time_index] = min(abs(0.003-time_axis)); number_of_samples3ms = stop3_time_index - start_time_index; every_3ms = 1:number_of_samples3ms:size(IFRAN_pattern,2)-number_of_samples10ms; hamm_window = hamming(11); halfHamming = (length(hamm_window)-1)/2; % window normalization norm = conv(ones(1,floor(number_of_samples10ms/2)),hamm_window); norm = norm(5+1:end-5)'; win_size = number_of_samples10ms; half_win_size = floor(win_size/2); hop_size = number_of_samples3ms; %pre-allocation due to speed %Acorr = zeros(size(IFRAN_pattern,1),size(every_3ms,2),number_of_samples10ms*2+1); %RAcorr = zeros(size(IFRAN_pattern,1),size(every_3ms,2),number_of_samples10ms*2+1); %SRAcorr = zeros(size(IFRAN_pattern,1),size(every_3ms,2),number_of_samples10ms*2+1-10); IPIhisttime = zeros(size(IFRAN_pattern,1),size(every_3ms,2),3); IPIhistweight = zeros(size(IFRAN_pattern,1),size(every_3ms,2),3); %maximum 3 peaks from the SRA iih = zeros(half_win_size,size(every_3ms,2)+1); for iCounter = 1:size(IFRAN_pattern,1) %each channel fprintf('Channel No. %i\n',iCounter); %time_counter = 1; %for jCounter = every_3ms %every 3ms time segment %% Guy's code % enframe this signal frames = enframe(IFRAN_pattern(iCounter,:),win_size,hop_size); % compute the autocorrelation acf = real(ifft(abs(fft(frames,[],2)).^2,[],2)); acf(acf<0)=0; acf = sqrt(acf(:,1:half_win_size)); % smooth with hamming window and take the root for frame=1:size(acf,1) %%debug %if iCounter == 130 % disp('here'); %end sra = conv(acf(frame,:),hamm_window); sra = sra(halfHamming+1:end-halfHamming)./norm'; df = [0 ; diff(sra')]; idx = find((df(1:end-1)>=0)&(df(2:end)<0)); % interpolate a=df(idx); b=df(idx+1); idx = (idx-1+a./(a-b)); % get rid of a zero peak, if it exists idx = idx(idx>1); % peak values corresponding to these intervals amp = interp1(1:length(sra),sra,idx,'linear'); % if required, remove peaks that lie below the mean sra % note that we disregard the value at zero delay %if (params.removePeaksBelowMean) valid = find(amp>mean(sra(2:end))); idx = idx(valid); amp = amp(valid); %end % only use the first four peaks (three intervals) idx = idx(1:min(4,length(idx))); % find the intervals interval = diff(idx); % now histogram the intervals if (~isempty(interval)) for k=1:length(interval), iih(round(interval(k)),frame) = iih(round(interval(k)),frame)+amp(k); IPIhisttime(iCounter,frame,k) = interval(k)/sfreq; IPIhistweight(iCounter,frame,k) = amp(k); end end end %% end Guy's code % %take the autocorrelation (ACF) of a 10ms-segment of each channel % Acorr(iCounter,time_counter,:) = xcorr(IFRAN_pattern(iCounter,jCounter:number_of_samples10ms+jCounter),'biased'); %biased scales the ACF by the reciprocal of the length of the segment % %root calculation % RAcorr(iCounter,time_counter,:) = sqrt(abs(Acorr(iCounter,time_counter,:))); % % %smoothing using the 11-point hamming window % for kCounter = 6:size(RAcorr(iCounter,time_counter,:),3)-5 %start with 6 and end with 5 samples % %less the length of time_axis not to get in conflict with the length of % %the hamm_window % SRAcorr(iCounter,time_counter,kCounter-5) = ... % squeeze(RAcorr(iCounter,time_counter,(kCounter-5):(kCounter+5)))'*hamm_window./sum(hamm_window); % end % % %mean value of actual SRA % SRA_mean = mean(SRAcorr(iCounter,time_counter,:)); % % %find signed zero-crossings of the first derivative (=difference) % z_crossings_indices = find(diff(sign(diff(squeeze(SRAcorr(iCounter,time_counter,:))))) < 0)+1; %+1 is necessary, because diff shortens vector by 1 % middle_index = ceil(size(SRAcorr(iCounter,time_counter,:),3)/2); % % validCounter = 1; % valid_z_crossings_indices = []; % %find valid zero-crossings (peak higher than meanvalue and within first 5 ms of SRA) % for lCounter = 1:length(z_crossings_indices) % if (SRAcorr(iCounter,time_counter,z_crossings_indices(lCounter)) > SRA_mean) && ... % (abs(z_crossings_indices(lCounter)-middle_index) < round(number_of_samples10ms/2)); % valid_z_crossings_indices(validCounter) = z_crossings_indices(lCounter); % validCounter = validCounter+1; % end % end % % %find main peak in the ACF % [tmp,index_of_z_crossings_main_index] = min(abs(middle_index-valid_z_crossings_indices)); % if ~tmp == 0 % disp('middle peak not appropriately found'); % end % % %%% for debugging % % if iCounter == 130 % % disp('here'); % % figure, plot(squeeze(SRAcorr(iCounter,time_counter,:))); % % hold on, plot([1 length(squeeze(SRAcorr(iCounter,time_counter,:)))],[SRA_mean SRA_mean],'r-'); % % end % %%% % % %generate IPI-histogram: take the first 3 intervals of SRAcorr % %(positive delay) in the first 5 ms % histcounter = 1; % for lCounter = index_of_z_crossings_main_index+1:min([length(valid_z_crossings_indices(index_of_z_crossings_main_index+1:end)) 3])+index_of_z_crossings_main_index % sampledifference = abs(valid_z_crossings_indices(lCounter)-valid_z_crossings_indices(lCounter-1)); % %the difference between two adjacent peaks in the SRA is taken % %as IPI estimate % IPIhisttime(iCounter,time_counter,histcounter) = sampledifference*one_sample_is_a_time_of; % %the amplitude of the SRA at the start of the SRA interval is % %taken as the IPIweight % IPIhistweight(iCounter,time_counter,histcounter) = SRAcorr(iCounter,time_counter,valid_z_crossings_indices(lCounter-1)); % histcounter = histcounter + 1; % end %time_counter = time_counter+1; end