Mercurial > hg > map
view testPrograms/testACF.m @ 38:c2204b18f4a2 tip
End nov big change
author | Ray Meddis <rmeddis@essex.ac.uk> |
---|---|
date | Mon, 28 Nov 2011 13:34:28 +0000 |
parents | |
children |
line wrap: on
line source
% function [P dt lags SACF]= testACF % testACF is a *script* to demonstrate the smoothed ACF of % Balaguer-Ballestera, E. Denham, S.L. and Meddis, R. (2008). % % Convert this to a *function* by uncommenting the first line % The function returns the P matrix plotted in Figure 96. % If a function is used, the following outputs are returned: % P: smoothed SACF (lags x time matrix) % dt: time interval between successive columns of P % lags: lags used in computing P % SACF: unsmoothed SACFs % % A range of options are supplied in the early part of the program % % #1 % Identify the model parameter file (in 'MAPparamsName') % % #2 % Identify the kind of model required (in 'AN_spikesOrProbability') % 'probability' is recommended for ACF work % % #3 % Choose between a harmonic complex or file input % by commenting out unwanted code % % #4 % Set the signal rms level (in leveldBSPL) % % #5 % Identify the model channel BFs in the vector 'BFlist'. % % #6 % Last minute changes to the model parameters can be made using % the cell array of strings 'paramChanges'. % This is used here to control the details of the ACF computations % Read the notes in this section for more information % % displays: % Figure 97 shows the AN response to the stimulus. this is a channel x time % display. The z-axis (and colour) is the AN fiber firing rate % % Figure 96 shows the P-matrix, the smoothed SACF. % % Figure 89 shows a summary of the evolution of the unsmoothed SACF % over time. If you wish to take a snapshot of the P-matrix at a % particular time, this figure can help identify when to take it. % The index on the y-axis, identifies the required row numbers % of the P or SACF matrix, e.g. P(:,2000) % % On request, (filteredSACFParams.plotACFs=1) Figure 89 shows the channel % by channel ACFs at intervals during the computation as a movie. % The number of ACF displays is controlled by 'plotACFsInterval' % and the movie can be slowed or speeded up using 'plotMoviePauses' % (see paramChanges section below). % - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - % This global will find results from MAP1_14 global savedInputSignal ANprobRateOutput ANoutput dt dtSpikes savedBFlist % This global,from model parameter file global filteredSACFParams dbstop if error restorePath=path; addpath (['..' filesep 'MAP'], ['..' filesep 'wavFileStore'], ... ['..' filesep 'utilities']) % User sets up requirements %% #1 parameter file name MAPparamsName='Normal'; % recommended %% #2 probability (fast) or spikes (slow) representation: select one % AN_spikesOrProbability='spikes'; % or AN_spikesOrProbability='probability'; % recommended %% #3 A. harmonic sequence or B. speech file input % Comment out unwanted code % A. harmonic tone (Hz) - useful to demonstrate a broadband sound sampleRate= 44100; % recommended 44100 signalType= 'tones'; duration=0.100; % seconds beginSilence=0.020; endSilence=0.020; rampDuration=.005; % raised cosine ramp (seconds) % toneFrequency is a vector of component frequencies F0=120; toneFrequency= [3*F0 4*F0 5*F0]; % or % B. file input signalType= 'file'; fileName='Oh No'; fileName='1z67931a_44kHz'; %% #4 rms level leveldBSPL= 60; % dB SPL (80 for Lieberman) %% #5 number of channels in the model % 21-channel model (log spacing of BFs) numChannels=21; lowestBF=150; highestBF= 6000; BFlist=round(logspace(log10(lowestBF), log10(highestBF), numChannels)); %% #6 change model parameters % Parameter changes can be used to change one or more model parameters % *after* the MAPparams file has been read (see manual) % Take control of ACF parameters % The filteredACF parameters are set in the MAPparamsNormal file % However, it is convenient to change them here leving the file intacta minPitch= 80; maxPitch= 500; numPitches=50; minPitch= 200; maxPitch= 4000; numPitches=40; maxLag=1/minPitch; minLag=1/maxPitch; lags= linspace(minLag, maxLag, numPitches); paramChanges={... 'filteredSACFParams.lags=lags; % autocorrelation lags vector;',... 'filteredSACFParams.acfTau= 2; % (Wiegrebe) time constant ACF;',... 'filteredSACFParams.lambda= 0.12; % slower filter to smooth ACF;',... 'filteredSACFParams.plotACFs=1; % plot ACFs while computing;',... 'filteredSACFParams.plotACFsInterval=0.01;',... 'filteredSACFParams.plotMoviePauses=.1; ',... 'filteredSACFParams.usePressnitzer=0; % attenuates ACF at long lags;',... 'filteredSACFParams.lagsProcedure= ''useAllLags'';',... }; % Notes: % acfTau: time constant of unsmoothed ACF % lambda: time constant of smoothed ACFS % plotACFs: plot ACFs during computation (0 to switch off, for speed) % plotACFsInterval: sampling interval for plots % plotMoviePauses: pause duration between frames to allow viewing % usePressnitzer: gives low weights to long lags % lagsProcedure: used to fiddle with output (ignore) %% delare 'showMap' options to control graphical output % see UTIL_showMAP for more options showMapOptions=[]; % showMapOptions.showModelOutput=0; % plot of all stages showMapOptions.surfAN=1; % surface plot of HSR response showMapOptions.PSTHbinwidth=0.001; % smoothing for PSTH if exist('fileName','var') % needed for labeling plot showMapOptions.fileName=fileName; end %% Generate stimuli switch signalType case 'tones' % Create tone stimulus dt=1/sampleRate; % seconds time=dt: dt: duration; inputSignal=sum(sin(2*pi*toneFrequency'*time), 1); amp=10^(leveldBSPL/20)*28e-6; % converts to Pascals (peak) inputSignal=amp*inputSignal; % apply ramps % catch rampTime error if rampDuration>0.5*duration, rampDuration=duration/2; end rampTime=dt:dt:rampDuration; ramp=[0.5*(1+cos(2*pi*rampTime/(2*rampDuration)+pi)) ... ones(1,length(time)-length(rampTime))]; inputSignal=inputSignal.*ramp; ramp=fliplr(ramp); inputSignal=inputSignal.*ramp; % add silence intialSilence= zeros(1,round(beginSilence/dt)); finalSilence= zeros(1,round(endSilence/dt)); inputSignal= [intialSilence inputSignal finalSilence]; case 'file' %% file input simple or mixed [inputSignal sampleRate]=wavread(fileName); dt=1/sampleRate; inputSignal=inputSignal(:,1); targetRMS=20e-6*10^(leveldBSPL/20); rms=(mean(inputSignal.^2))^0.5; amp=targetRMS/rms; inputSignal=inputSignal*amp; end wavplay(inputSignal, sampleRate) %% run the model fprintf('\n') disp(['Signal duration= ' num2str(length(inputSignal)/sampleRate)]) disp([num2str(numChannels) ' channel model: ' AN_spikesOrProbability]) disp('Computing ...') MAP1_14(inputSignal, sampleRate, BFlist, ... MAPparamsName, AN_spikesOrProbability, paramChanges); %% The model run is now complete. Now display the results % display the AN response UTIL_showMAP(showMapOptions) % compute ACF switch AN_spikesOrProbability case 'probability' % use only HSR fibers inputToACF=ANprobRateOutput(end-length(savedBFlist)+1:end,:); otherwise inputToACF=ANoutput; dt=dtSpikes; end disp ('computing ACF...') % read paramChanges to get new filteredSACFParams for i=1:length(paramChanges) eval(paramChanges{i}); end [P BFlist SACF]= filteredSACF(inputToACF, dt, savedBFlist, filteredSACFParams); disp(' ACF done.') %% plot original waveform on summary/smoothed ACF plot figure(96), clf subplot(3,1,3) t=dt*(1:length(savedInputSignal)); plot(t,savedInputSignal, 'k') xlim([0 t(end)]) title(['stimulus: ' num2str(leveldBSPL, '%4.0f') ' dB SPL']); % plot SACF figure(96) subplot(2,1,1) imagesc(P.^2) colormap bone ylabel('periodicities (Hz)'), xlabel('time (s)') title('smoothed SACF. (periodicity x time)') % y-axis specifies pitches (1/lags) % Force MATLAB to show the lowest pitch postedYvalues=[1 get(gca,'ytick')]; set(gca,'ytick',postedYvalues) pitches=1./filteredSACFParams.lags; set(gca,'ytickLabel', round(pitches(postedYvalues))) % x-axis is time at which P is samples [nCH nTimes]=size(P); t=dt:dt:dt*nTimes; tt=get(gca,'xtick'); set(gca,'xtickLabel', round(100*t(tt))/100) %% On a new figure show a cascade of SACFs figure(89), clf % select 100 samples; [r c]=size(SACF); step=round(c/100); idx=step:step:c; UTIL_cascadePlot(SACF(:,idx)', 1./pitches) xlabel('lag (s)'), ylabel('time pointer -->') title(' SACF summary over time') yValues=get(gca,'yTick'); set(gca,'yTickLabel', num2str(yValues'*100)) path(restorePath)