Mercurial > hg > map
view testPrograms/testBM.m @ 29:b51bf546ca3f
physiologyProb
author | Ray Meddis <rmeddis@essex.ac.uk> |
---|---|
date | Fri, 08 Jul 2011 13:48:27 +0100 |
parents | |
children | 161913b595ae |
line wrap: on
line source
function testBM (BMlocations, paramsName,... relativeFrequencies, AN_spikesOrProbability, paramChanges) % testBM generates input output functions for DRNL model for any number % of locations. % Computations are bast on a single channel model (channelBFs=BF) % peak displacement (peakAmp) is measured. % if DRNLParams.useMOC is chosen, the full model is run (slow) % otherwise only DRNL is computed. % Tuning curves are generated based on a range of frequencies reletove to % the BF of the location. % global DRNLParams if nargin<5 paramChanges=[]; end if nargin<4 AN_spikesOrProbability='probability'; end savePath=path; addpath (['..' filesep 'utilities'],['..' filesep 'MAP']) levels=-10:10:90; nLevels=length(levels); % levels= 50; nLevels=length(levels); % refBMdisplacement is the displacement of the BM at threshold % 1 nm disp at threshold (9 kHz, Ruggero) % ? adjust for frequency refBMdisplacement= 1e-8; % adjusted for 10 nm at 1 kHz toneDuration=.200; rampDuration=0.01; silenceDuration=0.01; sampleRate=30000; dbstop if error figure(3), clf set(gcf,'position',[280 350 327 326]) set(gcf,'name','DRNL - BM') pause(0.1) finalSummary=[]; nBFs=length(BMlocations); BFno=0; plotCount=0; for BF=BMlocations BFno=BFno+1; plotCount=plotCount+nBFs; stimulusFrequencies=BF* relativeFrequencies; nFrequencies=length(stimulusFrequencies); peakAmpBM=zeros(nLevels,nFrequencies); peakAmpBMdB=NaN(nLevels,nFrequencies); peakEfferent=NaN(nLevels,nFrequencies); peakAREfferent=NaN(nLevels,nFrequencies); levelNo=0; for leveldB=levels disp(['level= ' num2str(leveldB)]) levelNo=levelNo+1; freqNo=0; for frequency=stimulusFrequencies freqNo=freqNo+1; % Generate stimuli globalStimParams.FS=sampleRate; globalStimParams.overallDuration=... toneDuration+silenceDuration; % s stim.phases='sin'; stim.type='tone'; stim.toneDuration=toneDuration; stim.frequencies=frequency; stim.amplitudesdB=leveldB; stim.beginSilence=silenceDuration; stim.rampOnDur=rampDuration; % no offset ramp stim.rampOffDur=rampDuration; doPlot=0; inputSignal=stimulusCreate(globalStimParams, stim, doPlot); inputSignal=inputSignal(:,1)'; %% run the model MAPparamsName=paramsName; global DRNLoutput MOCattenuation ARattenuation MAP1_14(inputSignal, sampleRate, BF, ... MAPparamsName, AN_spikesOrProbability, paramChanges); DRNLresponse=DRNLoutput; peakAmp=max(max(... DRNLresponse(:, end-round(length(DRNLresponse)/2):end))); peakAmpBM(levelNo,freqNo)=peakAmp; peakAmpBMdB(levelNo,freqNo)=... 20*log10(peakAmp/refBMdisplacement); peakEfferent(levelNo,freqNo)=min(min(MOCattenuation)); peakAREfferent(levelNo,freqNo)=min(min(ARattenuation)); end % tone frequency end % level %% analyses results and plot % BM I/O plot (top panel) figure(3) subplot(3,nBFs,BFno), cla plot(levels,peakAmpBMdB, 'linewidth',2) hold on, plot(levels, repmat(refBMdisplacement,1,length(levels))) hold off title(['BF=' num2str(BF,'%5.0f') ' - ' paramsName]) xlabel('level') % set(gca,'xtick',levels), grid on if length(levels)>1,xlim([min(levels) max(levels)]), end ylabel(['dB re:' num2str(refBMdisplacement,'%6.1e') 'm']) ylim([-20 50]) set(gca,'ytick',[-10 0 10 20 40]) grid on % legend({num2str(stimulusFrequencies')}, 'location', 'EastOutside') UTIL_printTabTable([levels' peakAmpBMdB], ... num2str([0 stimulusFrequencies]','%5.0f'), '%5.0f') finalSummary=[finalSummary peakAmpBMdB]; % Tuning curve if length(relativeFrequencies)>2 figure(3), subplot(3,nBFs, 2*nBFs+BFno) % contour(stimulusFrequencies,levels,peakAmpBM,... % [refBMdisplacement refBMdisplacement],'r') contour(stimulusFrequencies,levels,peakAmpBM,... refBMdisplacement.*[1 5 10 50 100]) title(['tuning curve at ' num2str(refBMdisplacement) 'm']); ylabel('level (dB) at reference') xlim([100 10000]) grid on hold on set(gca,'xscale','log') end % MOC contribution figure(3) subplot(3,nBFs,nBFs+BFno), cla plot(levels,20*log10(peakEfferent), 'linewidth',2) ylabel('MOC (dB attenuation)'), xlabel('level') title(['peak MOC: model= ' AN_spikesOrProbability]) grid on if length(levels)>1, xlim([min(levels) max(levels)]), end % AR contribution hold on plot(levels,20*log10(peakAREfferent), 'r') hold off end % best frequency UTIL_showStructureSummary(DRNLParams, 'DRNLParams', 10) UTIL_printTabTable([levels' finalSummary], ... num2str([0 stimulusFrequencies]','%5.0f'), '%5.0f') path(savePath);