Mercurial > hg > map
diff userProgramsTim/fourierautocorrelationhistogram.m @ 38:c2204b18f4a2 tip
End nov big change
author | Ray Meddis <rmeddis@essex.ac.uk> |
---|---|
date | Mon, 28 Nov 2011 13:34:28 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/userProgramsTim/fourierautocorrelationhistogram.m Mon Nov 28 13:34:28 2011 +0000 @@ -0,0 +1,83 @@ +function fach=fourierautocorrelationhistogram(ANpattern,sfreq) + + +time_axis = 0:1/sfreq:(size(ANpattern,2)-1)/sfreq; + +%find how many samples of AN_pattern are 10ms and 3ms +%one_sample_is_a_time_of = time_axis(2); +[tmp, start_time_index] = min(abs(0-time_axis)); +[tmp, stop20_time_index] = min(abs(0.020-time_axis)); +number_of_samples20ms = stop20_time_index - start_time_index; + +[tmp, stop3_time_index] = min(abs(0.003-time_axis)); +number_of_samples3ms = stop3_time_index - start_time_index; +every_3ms = 1:number_of_samples3ms:size(ANpattern,2)-number_of_samples20ms; + +hamm_window = hamming(11); +halfHamming = (length(hamm_window)-1)/2; + +% window normalization + +norm = conv(ones(1,floor(number_of_samples20ms/2)),hamm_window); +norm = norm(5+1:end-5)'; +win_size = number_of_samples20ms; +half_win_size = floor(win_size/2); +hop_size = number_of_samples3ms; + +%preallocation due to speed +fach = zeros(half_win_size,size(every_3ms,2)); + +for iCounter = 1:size(ANpattern,1) %each channel + fprintf('Channel No. %i\n',iCounter); + %time_counter = 1; + %for jCounter = every_3ms %every 3ms time segment + + + + %% Guy's code + % enframe this signal + + frames = enframe(ANpattern(iCounter,:),win_size,hop_size); + + % compute the autocorrelation + + acf = real(ifft(abs(fft(frames,[],2)).^2,[],2)); + acf(acf<0)=0; + acf = sqrt(acf(:,1:half_win_size)); + + % smooth with hamming window and take the root + + for frame=1:size(acf,1) + + + smoothed_correlation = conv(acf(frame,:),hamm_window); + smoothed_correlation = smoothed_correlation(halfHamming+1:end-halfHamming)./norm'; + fsra = abs(fft(smoothed_correlation-mean(smoothed_correlation))); + fsra = fsra(1:floor(length(fsra)/2)); + + t = [0:1/sfreq:length(smoothed_correlation)/sfreq-1/sfreq]; + frequency = [0:1/t(end):1/(2*(t(2)-t(1)))]; + %identify peaks in the fft + df = [0 ; diff(fsra')]; + idx = find((df(1:end-1)>=0)&(df(2:end)<0)); +% % interpolate +% a=df(idx); +% b=df(idx+1); +% idx = (idx-1+a./(a-b)); + [sorted,sortedindex]=sort(fsra(idx),'descend'); + % just take the three highest values of the fourier-transform + valid_peak_index = sortedindex(1:min([length(sortedindex) 3])); + amp = sorted(1:min([length(sortedindex) 3])); + + %store valid peaks according to amplitude in a histogram + if (~isempty(valid_peak_index)) + for k=1:length(valid_peak_index), + fach(idx(valid_peak_index(k)),frame) = fach(idx(valid_peak_index(k)),frame)+amp(k); + end + end + %transform index into frequencies + + end +end + +%fach = 0;