Mercurial > hg > map
diff parameterStore/MAPparamsEndo.m @ 10:4ef8e0e63866
impaired hearing parameter files added
author | Ray Meddis <rmeddis@essex.ac.uk> |
---|---|
date | Tue, 31 May 2011 14:38:30 +0100 |
parents | |
children | 35af36fe0a35 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/parameterStore/MAPparamsEndo.m Tue May 31 14:38:30 2011 +0100 @@ -0,0 +1,345 @@ +function method=MAPparamsEndo ... + (BFlist, sampleRate, showParams) +% MAPparams<> establishes a complete set of MAP parameters +% Parameter file names must be of the form <MAPparams> <name> +% +% input arguments +% BFlist (optional) specifies the desired list of channel BFs +% otherwise defaults set below +% sampleRate (optional), default is 50000. +% showParams (optional) =1 prints out the complete set of parameters +% output argument +% method passes a miscelleny of values + +global inputStimulusParams OMEParams DRNLParams +global IHC_VResp_VivoParams IHCpreSynapseParams AN_IHCsynapseParams +global MacGregorParams MacGregorMultiParams filteredSACFParams +global experiment % used by calls from multiThreshold only +global IHC_cilia_RPParams + +currentFile=mfilename; % i.e. the name of this mfile +method.parameterSource=currentFile(10:end); % for the record + +switchOffEfferent=0; +efferentDelay=0.010; +method.segmentDuration=efferentDelay; + +if nargin<3, showParams=0; end +if nargin<2, sampleRate=50000; end +if nargin<1 || BFlist(1)<0 % if BFlist= -1, set BFlist to default + lowestBF=250; highestBF= 8000; numChannels=21; + % 21 chs (250-8k)includes BFs at 250 500 1000 2000 4000 8000 + BFlist=round(logspace(log10(lowestBF),log10(highestBF),numChannels)); +end +% BFlist=1000; + +% preserve for backward campatibility +method.nonlinCF=BFlist; +method.dt=1/sampleRate; + +%%%%%%%%%%%%%%%%%%%%%%%%%%%% +% set model parameters +%%%%%%%%%%%%%%%%%%%%%%%%%%%% + +%% #1 inputStimulus +inputStimulusParams=[]; +inputStimulusParams.sampleRate= sampleRate; + +%% #2 outerMiddleEar +OMEParams=[]; % clear the structure first +% outer ear resonances band pass filter [gain lp order hp] +OMEParams.externalResonanceFilters= [ 10 1 1000 4000]; + +% highpass stapes filter +% Huber gives 2e-9 m at 80 dB and 1 kHz (2e-13 at 0 dB SPL) +OMEParams.OMEstapesLPcutoff= 1000; +OMEParams.stapesScalar= 45e-9; + +% Acoustic reflex: maximum attenuation should be around 25 dB Price (1966) +% i.e. a minimum ratio of 0.056. +if ~switchOffEfferent + % 'spikes' model: AR based on brainstem spiking activity (LSR) + OMEParams.rateToAttenuationFactor=0.003; % * N(all ICspikes) +% OMEParams.rateToAttenuationFactor=0; % * N(all ICspikes) + % 'probability model': Ar based on An firing probabilities (LSR) + OMEParams.rateToAttenuationFactorProb=0.005;% * N(all ANrates) +% OMEParams.rateToAttenuationFactorProb=0;% * N(all ANrates) +else + OMEParams.rateToAttenuationFactor=0; % 0= off + OMEParams.rateToAttenuationFactorProb=0; % 0= off +end +% asymptote should be around 100-200 ms +OMEParams.ARtau=.05; % AR smoothing function +% delay must be longer than the segment length +OMEParams.ARdelay=efferentDelay; %Moss gives 8.5 ms latency +OMEParams.ARrateThreshold=0; + +%% #3 DRNL +DRNLParams=[]; % clear the structure first +DRNLParams.BFlist=BFlist; + +% DRNL nonlinear path +DRNLParams.a=3e4; % nonlinear path gain (below compression threshold) +% DRNLParams.a=3e2; % DRNL.a=0 means no OHCs (no nonlinear path) + +DRNLParams.b=8e-6; % *compression threshold raised compression +% DRNLParams.b=1; % b=1 means no compression + +DRNLParams.c=0.2; % compression exponent +% nonlinear filters +DRNLParams.nonlinCFs=BFlist; +DRNLParams.nonlinOrder= 3; % order of nonlinear gammatone filters +p=0.2895; q=170; % human (% p=0.14; q=366; % cat) +DRNLParams.nlBWs= p * BFlist + q; +DRNLParams.p=p; DRNLParams.q=q; % save p and q for printing only + +% DRNL linear path: +DRNLParams.g=100; % linear path gain factor +% linCF is not necessarily the same as nonlinCF +minLinCF=153.13; coeffLinCF=0.7341; % linCF>nonlinBF for BF < 1 kHz +DRNLParams.linCFs=minLinCF+coeffLinCF*BFlist; +DRNLParams.linOrder= 3; % order of linear gammatone filters +minLinBW=100; coeffLinBW=0.6531; +DRNLParams.linBWs=minLinBW + coeffLinBW*BFlist; % bandwidths of linear filters + +% DRNL MOC efferents +DRNLParams.MOCdelay = efferentDelay; % must be < segment length! +if ~switchOffEfferent + % 'spikes' model: MOC based on brainstem spiking activity (HSR) + DRNLParams.rateToAttenuationFactor = .009; % strength of MOC + DRNLParams.rateToAttenuationFactor = .009; % strength of MOC +% DRNLParams.rateToAttenuationFactor = 0; % strength of MOC + + % 'spikes' model: MOC based on brainstem spiking activity (HSR) + DRNLParams.rateToAttenuationFactorProb = .002; % strength of MOC +else + DRNLParams.rateToAttenuationFactor = 0; % 0 = MOC off (probability) + DRNLParams.rateToAttenuationFactorProb = 0; % 0 = MOC off (spikes) +end +DRNLParams.MOCtau =.03; % smoothing for MOC +DRNLParams.MOCrateThreshold =50; % set to AN rate threshold + + +%% #4 IHC_cilia_RPParams + +IHC_cilia_RPParams.tc= 0.0003; % 0.0003 filter time simulates viscocity +% IHC_cilia_RPParams.tc= 0.0005; % 0.0003 filter time simulates viscocity +IHC_cilia_RPParams.C= 0.05; % 0.1 scalar (C_cilia ) +IHC_cilia_RPParams.u0= 5e-9; +IHC_cilia_RPParams.s0= 30e-9; +IHC_cilia_RPParams.u1= 1e-9; +IHC_cilia_RPParams.s1= 1e-9; + +IHC_cilia_RPParams.Gmax= 5e-9; % 2.5e-9 maximum conductance (Siemens) +IHC_cilia_RPParams.Ga= 1e-9; % 4.3e-9 fixed apical membrane conductance + +% #5 IHC_RP +IHC_cilia_RPParams.Cab= 4e-012; % IHC capacitance (F) +IHC_cilia_RPParams.Cab= 1e-012; % IHC capacitance (F) +% IHC_cilia_RPParams.Et= 0.100; % endocochlear potential (V) +IHC_cilia_RPParams.Et= 0.07; % endocochlear potential (V) + +IHC_cilia_RPParams.Gk= 2e-008; % 1e-8 potassium conductance (S) +IHC_cilia_RPParams.Ek= -0.08; % -0.084 K equilibrium potential +IHC_cilia_RPParams.Rpc= 0.04; % combined resistances + + +%% #5 IHCpreSynapse +IHCpreSynapseParams=[]; +IHCpreSynapseParams.GmaxCa= 14e-9;% maximum calcium conductance +IHCpreSynapseParams.GmaxCa= 12e-9;% maximum calcium conductance +IHCpreSynapseParams.ECa= 0.066; % calcium equilibrium potential +IHCpreSynapseParams.beta= 400; % determine Ca channel opening +IHCpreSynapseParams.gamma= 100; % determine Ca channel opening +IHCpreSynapseParams.tauM= 0.00005; % membrane time constant ?0.1ms +IHCpreSynapseParams.power= 3; +% reminder: changing z has a strong effect on HF thresholds (like Et) +IHCpreSynapseParams.z= 2e42; % scalar Ca -> vesicle release rate + +LSRtauCa=50e-6; HSRtauCa=85e-6; % seconds +% LSRtauCa=35e-6; HSRtauCa=70e-6; % seconds +IHCpreSynapseParams.tauCa= [LSRtauCa HSRtauCa]; %LSR and HSR fiber + +%% #6 AN_IHCsynapse +% c=kym/(y(l+r)+kl) (spontaneous rate) +% c=(approx) ym/l (saturated rate) +AN_IHCsynapseParams=[]; % clear the structure first +AN_IHCsynapseParams.M= 12; % maximum vesicles at synapse +AN_IHCsynapseParams.y= 4; % depleted vesicle replacement rate +AN_IHCsynapseParams.y= 6; % depleted vesicle replacement rate + +AN_IHCsynapseParams.x= 30; % replenishment from re-uptake store +AN_IHCsynapseParams.x= 60; % replenishment from re-uptake store + +% reduce l to increase saturated rate +AN_IHCsynapseParams.l= 100; % *loss rate of vesicles from the cleft +AN_IHCsynapseParams.l= 250; % *loss rate of vesicles from the cleft + +AN_IHCsynapseParams.r= 500; % *reuptake rate from cleft into cell +% AN_IHCsynapseParams.r= 300; % *reuptake rate from cleft into cell + +AN_IHCsynapseParams.refractory_period= 0.00075; +% number of AN fibers at each BF (used only for spike generation) +AN_IHCsynapseParams.numFibers= 100; +AN_IHCsynapseParams.TWdelay=0.004; % ?delay before stimulus first spike + +%% #7 MacGregorMulti (first order brainstem neurons) +MacGregorMultiParams=[]; +MacGregorMultiType='chopper'; % MacGregorMultiType='primary-like'; %choose +switch MacGregorMultiType + case 'primary-like' + MacGregorMultiParams.nNeuronsPerBF= 10; % N neurons per BF + MacGregorMultiParams.type = 'primary-like cell'; + MacGregorMultiParams.fibersPerNeuron=4; % N input fibers + MacGregorMultiParams.dendriteLPfreq=200; % dendritic filter + MacGregorMultiParams.currentPerSpike=0.11e-6; % (A) per spike + MacGregorMultiParams.Cap=4.55e-9; % cell capacitance (Siemens) + MacGregorMultiParams.tauM=5e-4; % membrane time constant (s) + MacGregorMultiParams.Ek=-0.01; % K+ eq. potential (V) + MacGregorMultiParams.dGkSpike=3.64e-5; % K+ cond.shift on spike,S + MacGregorMultiParams.tauGk= 0.0012; % K+ conductance tau (s) + MacGregorMultiParams.Th0= 0.01; % equilibrium threshold (V) + MacGregorMultiParams.c= 0.01; % threshold shift on spike, (V) + MacGregorMultiParams.tauTh= 0.015; % variable threshold tau + MacGregorMultiParams.Er=-0.06; % resting potential (V) + MacGregorMultiParams.Eb=0.06; % spike height (V) + + case 'chopper' + MacGregorMultiParams.nNeuronsPerBF= 10; % N neurons per BF + MacGregorMultiParams.type = 'chopper cell'; + MacGregorMultiParams.fibersPerNeuron=10; % N input fibers +% MacGregorMultiParams.fibersPerNeuron=6; % N input fibers + + MacGregorMultiParams.dendriteLPfreq=50; % dendritic filter + MacGregorMultiParams.currentPerSpike=35e-9; % *per spike +% MacGregorMultiParams.currentPerSpike=45e-9; % *per spike + + MacGregorMultiParams.Cap=1.67e-8; % ??cell capacitance (Siemens) + MacGregorMultiParams.tauM=0.002; % membrane time constant (s) + MacGregorMultiParams.Ek=-0.01; % K+ eq. potential (V) + MacGregorMultiParams.dGkSpike=1.33e-4; % K+ cond.shift on spike,S + MacGregorMultiParams.tauGk= 0.0001;% K+ conductance tau (s) + MacGregorMultiParams.Th0= 0.01; % equilibrium threshold (V) + MacGregorMultiParams.c= 0; % threshold shift on spike, (V) + MacGregorMultiParams.tauTh= 0.02; % variable threshold tau + MacGregorMultiParams.Er=-0.06; % resting potential (V) + MacGregorMultiParams.Eb=0.06; % spike height (V) + MacGregorMultiParams.PSTHbinWidth= 1e-4; +end + +%% #8 MacGregor (second-order neuron). Only one per channel +MacGregorParams=[]; % clear the structure first +MacGregorParams.type = 'chopper cell'; +MacGregorParams.fibersPerNeuron=10; % N input fibers +MacGregorParams.dendriteLPfreq=100; % dendritic filter +MacGregorParams.currentPerSpike=120e-9;% *(A) per spike + +MacGregorParams.Cap=16.7e-9; % cell capacitance (Siemens) +MacGregorParams.tauM=0.002; % membrane time constant (s) +MacGregorParams.Ek=-0.01; % K+ eq. potential (V) +MacGregorParams.dGkSpike=1.33e-4; % K+ cond.shift on spike,S +MacGregorParams.tauGk= 0.0003; % K+ conductance tau (s) +MacGregorParams.Th0= 0.01; % equilibrium threshold (V) +MacGregorParams.c= 0; % threshold shift on spike, (V) +MacGregorParams.tauTh= 0.02; % variable threshold tau +MacGregorParams.Er=-0.06; % resting potential (V) +MacGregorParams.Eb=0.06; % spike height (V) +MacGregorParams.debugging=0; % (special) +% wideband accepts input from all channels (of same fiber type) +% use wideband to create inhibitory units +MacGregorParams.wideband=0; % special for wideband units +% MacGregorParams.saveAllData=0; + +%% #9 filteredSACF +minPitch= 300; maxPitch= 3000; numPitches=60; % specify lags +pitches=100*log10(logspace(minPitch/100, maxPitch/100, numPitches)); +filteredSACFParams.lags=1./pitches; % autocorrelation lags vector +filteredSACFParams.acfTau= .003; % time constant of running ACF +filteredSACFParams.lambda= 0.12; % slower filter to smooth ACF +filteredSACFParams.plotFilteredSACF=1; % 0 plots unfiltered ACFs +filteredSACFParams.plotACFs=0; % special plot (see code) +% filteredSACFParams.usePressnitzer=0; % attenuates ACF at long lags +filteredSACFParams.lagsProcedure= 'useAllLags'; +% filteredSACFParams.lagsProcedure= 'useBernsteinLagWeights'; +% filteredSACFParams.lagsProcedure= 'omitShortLags'; +filteredSACFParams.criterionForOmittingLags=3; + +% checks +if AN_IHCsynapseParams.numFibers<MacGregorMultiParams.fibersPerNeuron + error('MacGregorMulti: too few input fibers for input to MacG unit') +end + + +%% write all parameters to the command window +% showParams is currently set at the top of htis function +if showParams + fprintf('\n %%%%%%%%\n') + fprintf('\n%s\n', method.parameterSource) + fprintf('\n') + nm=UTIL_paramsList(whos); + for i=1:length(nm) + % eval(['UTIL_showStruct(' nm{i} ', ''' nm{i} ''')']) + if ~strcmp(nm(i), 'method') + eval(['UTIL_showStructureSummary(' nm{i} ', ''' nm{i} ''', 10)']) + end + end +end + + + +% ********************************************************************** comparison data +% store individual data here for display on the multiThreshold GUI (if used) +% the final value in each vector is an identifier (BF or duration)) +if isstruct(experiment) + switch experiment.paradigm + case {'IFMC','IFMC_8ms'} + % based on MPa + comparisonData=[ + 66 51 49 48 46 45 54 250; + 60 54 46 42 39 49 65 500; + 64 51 38 32 33 59 75 1000; + 59 51 36 30 41 81 93 2000; + 71 63 53 44 36 76 95 4000; + 70 64 43 35 35 66 88 6000; + 110 110 110 110 110 110 110 8000; + ]; + if length(BFlist)==1 && ~isempty(comparisonData) + availableFrequencies=comparisonData(:,end)'; + findRow= find(BFlist==availableFrequencies); + if ~isempty (findRow) + experiment.comparisonData=comparisonData(findRow,:); + end + end + + case {'TMC','TMC_8ms'} + % based on MPa + comparisonData=[ + 48 58 63 68 75 80 85 92 99 250; + 33 39 40 49 52 61 64 77 79 500; + 39 42 50 81 83 92 96 97 110 1000; + 24 26 32 37 46 51 59 71 78 2000; + 65 68 77 85 91 93 110 110 110 4000; + 20 19 26 44 80 95 96 110 110 6000; + ]; + if length(BFlist)==1 && ~isempty(comparisonData) + availableFrequencies=comparisonData(:,end)'; + findRow= find(BFlist==availableFrequencies); + if ~isempty (findRow) + experiment.comparisonData=comparisonData(findRow,:); + end + end + + case { 'absThreshold', 'absThreshold_8'} + % MPa thresholds + experiment.comparisonData=[ + 32 26 16 18 22 22 0.008; + 16 13 6 9 15 11 0.500 + ]; + + + otherwise + experiment.comparisonData=[]; + end +end + +