Mercurial > hg > map
comparison userProgramsTim/track_formants_from_IPI_guy.m @ 38:c2204b18f4a2 tip
End nov big change
author | Ray Meddis <rmeddis@essex.ac.uk> |
---|---|
date | Mon, 28 Nov 2011 13:34:28 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
37:771a643d5c29 | 38:c2204b18f4a2 |
---|---|
1 function [iih,IPIhisttime,IPIhistweight]=track_formants_from_IPI_guy(IFRAN_pattern, sfreq) | |
2 % | |
3 % tracks the formants according to an analysis proposed in Secker-Walker | |
4 % JASA 1990, section V.A | |
5 % Tim Jürgens, February 2011, code from Guy Brown included | |
6 % | |
7 % input: IFRAN_pattern: pattern of the auditory model (dependend on the number of modules used) | |
8 % first dimension: frequency channel, | |
9 % second dimension: time (samples) | |
10 % sfreq: sampling frequency | |
11 % output: iih: interpeak-interval histogram, matrix very similar | |
12 % the plot 5 in the Secker-Walker paper | |
13 % | |
14 % | |
15 % | |
16 | |
17 | |
18 time_axis = 0:1/sfreq:(size(IFRAN_pattern,2)-1)/sfreq; | |
19 | |
20 %find how many samples of AN_pattern are 10ms and 3ms | |
21 %one_sample_is_a_time_of = time_axis(2); | |
22 [tmp, start_time_index] = min(abs(0-time_axis)); | |
23 [tmp, stop10_time_index] = min(abs(0.01-time_axis)); | |
24 number_of_samples10ms = stop10_time_index - start_time_index; | |
25 | |
26 [tmp, stop3_time_index] = min(abs(0.003-time_axis)); | |
27 number_of_samples3ms = stop3_time_index - start_time_index; | |
28 every_3ms = 1:number_of_samples3ms:size(IFRAN_pattern,2)-number_of_samples10ms; | |
29 | |
30 hamm_window = hamming(11); | |
31 halfHamming = (length(hamm_window)-1)/2; | |
32 | |
33 % window normalization | |
34 | |
35 norm = conv(ones(1,floor(number_of_samples10ms/2)),hamm_window); | |
36 norm = norm(5+1:end-5)'; | |
37 win_size = number_of_samples10ms; | |
38 half_win_size = floor(win_size/2); | |
39 hop_size = number_of_samples3ms; | |
40 | |
41 | |
42 %pre-allocation due to speed | |
43 %Acorr = zeros(size(IFRAN_pattern,1),size(every_3ms,2),number_of_samples10ms*2+1); | |
44 %RAcorr = zeros(size(IFRAN_pattern,1),size(every_3ms,2),number_of_samples10ms*2+1); | |
45 %SRAcorr = zeros(size(IFRAN_pattern,1),size(every_3ms,2),number_of_samples10ms*2+1-10); | |
46 IPIhisttime = zeros(size(IFRAN_pattern,1),size(every_3ms,2),3); | |
47 IPIhistweight = zeros(size(IFRAN_pattern,1),size(every_3ms,2),3); %maximum 3 peaks from the SRA | |
48 iih = zeros(half_win_size,size(every_3ms,2)+1); | |
49 | |
50 | |
51 | |
52 | |
53 for iCounter = 1:size(IFRAN_pattern,1) %each channel | |
54 fprintf('Channel No. %i\n',iCounter); | |
55 %time_counter = 1; | |
56 %for jCounter = every_3ms %every 3ms time segment | |
57 | |
58 | |
59 | |
60 %% Guy's code | |
61 % enframe this signal | |
62 | |
63 frames = enframe(IFRAN_pattern(iCounter,:),win_size,hop_size); | |
64 | |
65 % compute the autocorrelation | |
66 | |
67 acf = real(ifft(abs(fft(frames,[],2)).^2,[],2)); | |
68 acf(acf<0)=0; | |
69 acf = sqrt(acf(:,1:half_win_size)); | |
70 | |
71 % smooth with hamming window and take the root | |
72 | |
73 for frame=1:size(acf,1) | |
74 | |
75 %%debug | |
76 %if iCounter == 130 | |
77 % disp('here'); | |
78 %end | |
79 | |
80 | |
81 sra = conv(acf(frame,:),hamm_window); | |
82 sra = sra(halfHamming+1:end-halfHamming)./norm'; | |
83 df = [0 ; diff(sra')]; | |
84 idx = find((df(1:end-1)>=0)&(df(2:end)<0)); | |
85 % interpolate | |
86 a=df(idx); | |
87 b=df(idx+1); | |
88 idx = (idx-1+a./(a-b)); | |
89 % get rid of a zero peak, if it exists | |
90 idx = idx(idx>1); | |
91 % peak values corresponding to these intervals | |
92 amp = interp1(1:length(sra),sra,idx,'linear'); | |
93 % if required, remove peaks that lie below the mean sra | |
94 % note that we disregard the value at zero delay | |
95 %if (params.removePeaksBelowMean) | |
96 valid = find(amp>mean(sra(2:end))); | |
97 idx = idx(valid); | |
98 amp = amp(valid); | |
99 %end | |
100 % only use the first four peaks (three intervals) | |
101 idx = idx(1:min(4,length(idx))); | |
102 % find the intervals | |
103 interval = diff(idx); | |
104 % now histogram the intervals | |
105 if (~isempty(interval)) | |
106 for k=1:length(interval), | |
107 iih(round(interval(k)),frame) = iih(round(interval(k)),frame)+amp(k); | |
108 IPIhisttime(iCounter,frame,k) = interval(k)/sfreq; | |
109 IPIhistweight(iCounter,frame,k) = amp(k); | |
110 end | |
111 end | |
112 | |
113 end | |
114 | |
115 | |
116 | |
117 | |
118 %% end Guy's code | |
119 | |
120 | |
121 % %take the autocorrelation (ACF) of a 10ms-segment of each channel | |
122 % Acorr(iCounter,time_counter,:) = xcorr(IFRAN_pattern(iCounter,jCounter:number_of_samples10ms+jCounter),'biased'); %biased scales the ACF by the reciprocal of the length of the segment | |
123 % %root calculation | |
124 % RAcorr(iCounter,time_counter,:) = sqrt(abs(Acorr(iCounter,time_counter,:))); | |
125 % | |
126 % %smoothing using the 11-point hamming window | |
127 % for kCounter = 6:size(RAcorr(iCounter,time_counter,:),3)-5 %start with 6 and end with 5 samples | |
128 % %less the length of time_axis not to get in conflict with the length of | |
129 % %the hamm_window | |
130 % SRAcorr(iCounter,time_counter,kCounter-5) = ... | |
131 % squeeze(RAcorr(iCounter,time_counter,(kCounter-5):(kCounter+5)))'*hamm_window./sum(hamm_window); | |
132 % end | |
133 % | |
134 % %mean value of actual SRA | |
135 % SRA_mean = mean(SRAcorr(iCounter,time_counter,:)); | |
136 % | |
137 % %find signed zero-crossings of the first derivative (=difference) | |
138 % z_crossings_indices = find(diff(sign(diff(squeeze(SRAcorr(iCounter,time_counter,:))))) < 0)+1; %+1 is necessary, because diff shortens vector by 1 | |
139 % middle_index = ceil(size(SRAcorr(iCounter,time_counter,:),3)/2); | |
140 % | |
141 % validCounter = 1; | |
142 % valid_z_crossings_indices = []; | |
143 % %find valid zero-crossings (peak higher than meanvalue and within first 5 ms of SRA) | |
144 % for lCounter = 1:length(z_crossings_indices) | |
145 % if (SRAcorr(iCounter,time_counter,z_crossings_indices(lCounter)) > SRA_mean) && ... | |
146 % (abs(z_crossings_indices(lCounter)-middle_index) < round(number_of_samples10ms/2)); | |
147 % valid_z_crossings_indices(validCounter) = z_crossings_indices(lCounter); | |
148 % validCounter = validCounter+1; | |
149 % end | |
150 % end | |
151 % | |
152 % %find main peak in the ACF | |
153 % [tmp,index_of_z_crossings_main_index] = min(abs(middle_index-valid_z_crossings_indices)); | |
154 % if ~tmp == 0 | |
155 % disp('middle peak not appropriately found'); | |
156 % end | |
157 % | |
158 % %%% for debugging | |
159 % % if iCounter == 130 | |
160 % % disp('here'); | |
161 % % figure, plot(squeeze(SRAcorr(iCounter,time_counter,:))); | |
162 % % hold on, plot([1 length(squeeze(SRAcorr(iCounter,time_counter,:)))],[SRA_mean SRA_mean],'r-'); | |
163 % % end | |
164 % %%% | |
165 % | |
166 % %generate IPI-histogram: take the first 3 intervals of SRAcorr | |
167 % %(positive delay) in the first 5 ms | |
168 % histcounter = 1; | |
169 % for lCounter = index_of_z_crossings_main_index+1:min([length(valid_z_crossings_indices(index_of_z_crossings_main_index+1:end)) 3])+index_of_z_crossings_main_index | |
170 % sampledifference = abs(valid_z_crossings_indices(lCounter)-valid_z_crossings_indices(lCounter-1)); | |
171 % %the difference between two adjacent peaks in the SRA is taken | |
172 % %as IPI estimate | |
173 % IPIhisttime(iCounter,time_counter,histcounter) = sampledifference*one_sample_is_a_time_of; | |
174 % %the amplitude of the SRA at the start of the SRA interval is | |
175 % %taken as the IPIweight | |
176 % IPIhistweight(iCounter,time_counter,histcounter) = SRAcorr(iCounter,time_counter,valid_z_crossings_indices(lCounter-1)); | |
177 % histcounter = histcounter + 1; | |
178 % end | |
179 | |
180 %time_counter = time_counter+1; | |
181 end | |
182 |