
Demo of the EssexAid Matlab Wrapper
This is a quick demo showing how to use the Essex aid matlab wrapper. The wrapper performs the jobs
that the real time framework performs in the lab.

General usage examples
First off, load up the essex aid

x = EssexAid_WrapClass

x =

EssexAid_WrapClass

Properties:
sr: 48000

numSamples: 1024
stimulusUSER: [1x96000 double]
audiometry_dB: [6x1 double]
mainGain_dB: [6x1 double]

TC_dBHL: [6x1 double]
TM_dBHL: [6x1 double]
DRNLc: [6x1 double]
ARtau: 0.0600

ARthreshold_dB: 85
MOCtau: 0.4500

MOCfactor: 0.5000
bwOct: 0.5000

filterOrder: 2
useGTF: 0

MOCrecord: []
channelBFs: [11x1 double]
numChannels: 11
aidOPnice: []

Ommiting the semicolon shows a number of properties that are accesible to the user of the class.

The default stimulus for the aid is a sequence of tone pips with increasing level that are separated by si-
lent intervals. This is a useful stimulus for debugging and inspection of the aid performance. However, it
is easy to override this default to use any user defined mono or stereo stimulus. The wrapper also over-
rides Matlab's default plot function, giving a quick way to inspect what the aid is doing. Plotting the
wrapper object before running the aid algorithm manually will just show the envelope of the input stim-
ulus.

plot(x)

1



It is also possible to input any stimulus type by setting the properties manually. The wrapper expects the
input stimulus to be in units of pascals. Therefore, to input a 70 dB Gaussian noise with a 25 kHz sample
rate we would do the following . .

newSr = 25e3;
nz = randn(newSr/2, 1);
nz = nz./sqrt(mean(nz.^2)); %normalize RMS to 1
nz = nz * 20e-6 * 10^(70/20); %scale to 70 dB SPL

x.stimulusUSER = nz;
x.sr = newSr;

plot(x)

Demo of the EssexAid Matlab Wrapper

2



It is also possible to specify the stimulus and sample rate when instantiating a new instance of the class
as shown by the following example.

x = EssexAid_WrapClass(newSr, nz);
plot(x)

Demo of the EssexAid Matlab Wrapper

3



The wrapper class contains a handy helper function for generating different types of tone sequences that
can be used as follows.

silDur = 0.1; %seconds
pulseDur = 0.1; %seconds
dBlevs = [20 30 40 50 60 70];
freq = 1000;
sampleRate = x.sr;

x.stimulusUSER = EssexAid_WrapClass.pipSequence(sampleRate, freq, dBlevs, pulseDur, silDur);

This new stimulus envelope can be viewed by using the plot method once again

plot(x)

Demo of the EssexAid Matlab Wrapper

4



First set up a presciption for a typical 40 dB flat loss

x.audiometry_dB = 40*ones(6,1);

The audiometry_dB property is the pure tone thresholds of the listener in dB SPL at frequencies octave
spaced between 0.25 and 8 kHz. The wrapper will interpolate these values accordingly, depending on
the channel resolution. the channel resolution can be altered by changing the bwOct parameter.

Next we can set the gain of the aid to 50% of the loss.

x.mainGain_dB = x.audiometry_dB * 0.5;

We shall assume that this imaginary person has no residual compression and so we shall set the instant-
aneous compression threshold to 20 dB above the listener's detection threshold.

x.TC_dBHL = 20*ones(6,1);

To keep things simple to understand, for the first example, we will disable the MOC response by setting
the MOC threshold to a high level.

x.TM_dBHL = 200*ones(6,1);

Now process the stimulus using the hearing aid algorithm and view the output

x = x.processStim;
plot(x)

Demo of the EssexAid Matlab Wrapper

5



The aid output is shown in red and the original stimulus is shown in black. The first pulse was input at
20 dB spl and comes out at 40 dB SPL after the linear gain. The compression threshold in this prescrip-
tion was set to 20 dB HL (60 dB SPL for this listener). The knee point of the instantaneous compression
can be clearly seen at 60 dB SPL output from the aid.

The effects of the aid are generally easier to understand if the main gain and pure tone thresholds are set
to zero. That way we can analyse the signal processing without having to constantly make the mental
conversions between SPL and HL. The main gain is applied after all of the interesting signal processing
anyway, so for the rest of this demo, the listener's pure tone thresholds and main gain are set to zero.

x.audiometry_dB = zeros(size(x.audiometry_dB));
x.mainGain_dB = x.audiometry_dB;

I will also set the compression threshold slightly higher for this example

x.TC_dBHL = 40*ones(6,1);

The compression knee is now obvious against the backdrop of the input signal.

x = x.processStim;
plot(x)

Demo of the EssexAid Matlab Wrapper

6



Now to enable the MOC feedback compression. A reasonable value for this is around 10 dB HL (10 dB
SPL also for this example).

x.TM_dBHL = 10*ones(6,1);
x = x.processStim;
plot(x)

Demo of the EssexAid Matlab Wrapper

7



The MOC can be seen to activate below the instantaneous compression threshold but only towards the
end of the pulses. The effects of the MOC are better observed in a continuous background. The MOC
should slowly drag the overall level of the sound towards threshold, depending on the continuous back-
ground level. The instantaneous compression will take care of any loud impulsive sounds.

To illustrate this better we will use a sequence of tone pips in a background of continuous noise. This
example also shows the action of the acoustic reflex simulation, blocking the input to the subsequent
processing from going much above 85 dB SPL.

silDur = 0.2; %seconds
pulseDur = 0.025; %seconds
dBlevs = [70 80 90 70 80 90];
freq = 1000;
sampleRate = x.sr;

x.stimulusUSER = EssexAid_WrapClass.pipSequence(sampleRate, freq, dBlevs, pulseDur, silDur);

nz = randn(size(x.stimulusUSER));
nz = nz./sqrt(mean(nz.^2)); %normalize RMS to 1
nz = nz * 20e-6 * 10^(50/20); %scale to 50 dB SPL

x.stimulusUSER = x.stimulusUSER + nz;

x = x.processStim;
plot(x)

Demo of the EssexAid Matlab Wrapper

8



The strength of the MOC response can be tuned using the MOC factor parameter. This controls the dB
attenuation applied to the next frame by multiplication of the factor with the number of decibels that the
output of the second filter exceeds a threshold in the current frame. The instantaneous compression acts
as a soft limiter on the maximum attenuation that the MOC can apply.

x.MOCfactor = 0.95;

x = x.processStim;
plot(x)

Demo of the EssexAid Matlab Wrapper

9



If at any point you want to use the output of the aid for your own analysis, you can directly use, or copy
the aidOPnice parameter. This is the aid output reshaped to the shape of the input stimulus. This is use-
ful for implementing the wrapper in the speech recognition framework or in multithreshold. The aid re-
quires a buffered stereo signal, but the wrapper will handle all the conversion behind the scenes and then
convert the stimulus back to a friendly format. This will hopefully make inserting the aid into any exist-
ing analysis code reliable and painless.

myOutput = x.aidOPnice;

Published with MATLAB® 7.10

Demo of the EssexAid Matlab Wrapper

10


	General usage examples

