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Overview

This document is an instruction manual, describing a subset of the software tools currently used as
part of the “hearing dummy” project. The software tools described can begin to estimate the
difficulties that may be experienced by a hearing impaired listener when listening to speech in noise,
and can potentially estimate the benefits of using a hearing aid when listening in these
environments. With further development, it may eventually be possible to use this software as a
platform for fine tuning hearing aid parameters to suit a patient in their absence.

The software can be used to connect a simulated hearing aid to a computer model of the patients
impaired hearing (the dummy). The dummy can then be connected to an automatic speech
recogniser. If an automatic speech recogniser is trained using features derived from the information
conveyed by the auditory nerve in a model of normal hearing, then the speech recogniser will
perform optimally when tested with feature vectors derived from the same normal-hearing dummy.
If the same recogniser is tested again, but using feature vectors derived from an impaired dummy,
then one would expect the recognition score to drop significantly. The representation of the acoustic
stimulus can be modified by a hearing aid algorithm before being presented to the impaired dummy.
The potential of the hearing aid signal processing to alleviate some of the reduction in speech
intelligibility caused by the impairment may then be assessed by comparing the normal, impaired-
aided and impaired-unaided recognition scores.

Most of this tutorial is spent explaining the simple test scripts provided. This is to help the user
understand the way that recognition experiments have been constructed in the Essex lab. Due to the
different paradigms, and the different stimuli used in speech recognition experiments, a generic
MATLAB software suite would need to be very complex and would probably end up imposing
methodologies on the user that may would turn out to be restrictive. This is probably why HTK is
distributed as a set of building blocks, each with minimal functionality. The code given here will
definitely need heavy modification to work on anything outside the digit triplet recognition task
described. However, all of the basic building blocks are provided and they can be reused at the
reader’s discretion.

The software suite exists in a “userPrograms” folder within the main Matlab model of the Auditory
Periphery (MAP) folder. This tutorial document assumes that the reader is already familiar and
comfortable with using MAP. The full documentation for MAP can be found at:

http://www.essex.ac.uk/psychology/department/research/hearing models.html
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Files included in the suite
The evaluation of the hearing aid is done with the assistance of 3 main classes. A class is a building
block used in object-oriented programming.

cEssexAid.m

This is the file that contains the Essex Aid wrapper class. The Essex Aid is a novel hearing aid
algorithm developed here at the University of Essex. Once the user is familiar with the software
framework, it should be relatively straightforward to swap out the hearing aid algorithm so that any
hearing aid algorithm can be tested.

A wrapper class provides a layer of abstraction between the user and the underlying algorithm. In
this instance, the underlying function has been written so that it can easily be converted to another
programming language more suitable for real-time implementation. It was not written to be user
friendly in the context of Matlab. However, the wrapper class is a facade, simplifying the interface
and making it easy to change the parameters of the aid from the Matlab environment. More details
can be found in the accompanying PDF document.

1. cJob.m
This is the class definition that is the real workhorse of the operation. It provides many utility
functions to assist the user in creating feature sets for use in training and testing the speech
recogniser. This class also contains code for scheduling, so that many sounds can be processed in
parallel on one or many machines should you have the resources available to do so.

2. cHMM.m
This is a wrapper class for the Hidden Markov Toolkit (HTK) http://htk.eng.cam.ac.uk/. This class
contains helper functions that provide the recogniser with the necessary information for training a

HMM and scoring the results produced.

* k%

Other functions within the parent directory include

worker.m

This is an autonomous little function that takes a path to a folder containing a list of jobs as an input
argument. A job is defined here as a list of wav files that need to each be converted into a feature
vector. It searches the directory for jobs to do and works until all of the jobs are complete.

Exp_Tutorial_X.m
Files prefixed with “Exp_" are the files that users will edit most frequently. They are at the top of the
function call stack and initiate all of the tasks required to run a recognition experiment.

MAPwrap.m

This is a very simple wrapper for MAP, making it easy to call from the classes within the suite. A lot
of data transport in MAP is done using global variables. This is actually a very useful feature for those
users wanting to explore values of different variables at any stage in the model without setting
breakpoints. However, in the context of ASR jobs, processing takes a long time and is normally left
unattended. Therefore, the user will not be inspecting variables and interactively exploring the
parameter space. This exploratory stage would probably have been done before devising and
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running a speech recognition experiment. Because global variables can (i) prove to be a source of
confusion when debugging a larger application, and (ii) be treacherous if the user inadvertently
decides to use a variable with the same name, the wrapper prevents these “globals” from being truly
global outside the scope of MAP.

* % %

There is one folder in the parent directory

/def

This contains the definition files required by HTK, such as grammar rules and dictionaries. Full
descriptions of these files are beyond the scope of this document, but detailed information can be
found here http://htk.eng.cam.ac.uk/

* k%
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Additional notes on object oriented programming in Matlab
The end user does not need to be familiar with this programming paradigm to use the software
suite, but the curious can find additional information using the following link:

http://www.mathworks.co.uk/products/matlab/object oriented programming.html.

BEWARE: lines of code given in the coming examples that do not return a value are not redundant.
For example, the line of code given below calls a function in the object named “xL”. It is not
pointlessly referencing a variable in a structure as the syntax might lead the reader to believe.

XL.storeSelf; % This is a call to a member function and is NOT a pointless line of code!

The main reason for choosing an object oriented design was so that jobs (where 1 job involves the
conversion of a list of audio data files into feature vectors for the recogniser given a set of
parameters) could be put into arrays. This makes batch copying and batch processing jobs relatively
simple. Another reason for choosing this paradigm was to hide some of the implementation details
from the user (myself included) to simplify the daily tasks of editing the scripts that control individual
experiments. The classes do not use any formal design patterns and are quite monolithic, making
them easy to understand structurally, but not particularly flexible to major changes in experimental
paradigm.

There is some object-oriented terminology used repeatedly throughout this tutorial that may cause
confusion. The offenders are:

e Property — This is a variable within an object and can be thought of as a field in a structure.

e Member function or method — This is a function defined by the class. It acts on the
properties of the object. In the class definitions (See Appendix), these methods will always
take the current object as one of their input arguments. They may also return the object if
they modify any of the properties.

e Static method — This is just like a typical Matlab function that takes inputs and outputs that
can be totally unrelated to the class. It is defined in a class to give it a home, but it can be
called independently of an instance of the class.

e Constructor — This is a method that is called automatically when a new object is declared.

e Public — Any method or property that can be set or called by the user of the object.
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Tutorial

One of the best ways to learn is by doing. The tutorial is split into two sections that represent a
typical workflow. The first part of the tutorial shows the reader how to make a new HMM and then
test it. The second part shows the reader how to use an existing HMM to test new features. The new
data might have come from a different dummy and/or hearing aid processing.

Before any work with the recogniser can be accomplished, the speech material and recogniser
software must be in place.

Install HTK

HTK needs to be compiled for your platform and added to the system path. THE SYSTEM PATH IS
NOT THE SAME THING AS THE MATLAB PATH. The method for doing this will be different under
different operating systems. See the following link for information on how to add programs to the
path under Windows.

http://Imgtfy.com/?q=windows+add+to+path

Once the HTK binaries have been successfully added to the path, the individual tools should be
available from Matlab. This can be tested by issuing the following command (the “>>" should not be
typed, but the “1” should):

>> IHVite -V

This command should then output some version information about HTK into the command window.
If the command fails to return version information under windows, then logging off and then back
on again should solve the problem.

Get appropriate speech material
The software provided is designed to work with the AURORA 2.0 Tl digits corpus available here:

http://www.elda.org/article52.html

The clean training data should be in wav format and placed into one directory. The clean, digit-triplet
test sound files should be placed in a separate directory, ignoring triplets containing bisyllabic digits
“seven” and “zero”. The tutorial comes with a mini AURORA-style corpus recorded here in the lab
(so as not to violate copyright) for demo purposes only. The speech material can be found in the
“demo_wavs” directory.

Custom corpora
It is also possible to make a custom corpus so long as the following rules and file naming conventions
are adhered to.

1) Speech material should be recorded in (or converted to) wav file format. Any sampling rate
can be used, as the Matlab scripts will resample the speech files appropriately. The speech
should be recorded in single channel format.

2) Training data should be recorded audio spoken as strings of digits consisting of between 1
and approximately 7 digits per file. Test data files should contain 3 digits. Digits should

include a fairly even mixture of “oh”, “one”, “two”, “three”, “four”, “five”, “six”, “eight”,
“nine”. The bisyllabic digits “seven” and “zero” should not be used.
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3) Speech files should be named like the following example, “FAC_804A.wav”. The first
character in the string refers to the gender of the talker. The next two characters are a
unique identifier for the specific person doing the talking. These two characters should be
followed by an underscore. The next characters are the string of numbers that are uttered in
the sound file. These numbers are terminated with a capital “A” and the wav extension. If
the same string of numbers is spoken by the same person on more than one occasion,
numbers are terminated with a capital “B” and the wav extension. IMPORTANT NOTE: If the
file contains the utterance “oh”, the alphabetic character “O” should be used rather than the
numerical character “0”.

4) The files in the training and testing corpora should be unique.

Of course, the user is not limited to using digit speech utterances, and it should be possible to use
any conceivable speech material by editing the code appropriately.

Get appropriate noise material

Any noise material of suitable duration (substantially longer than the longest sound file containing
speech) can be used. The tutorials here use the pink noise sample included in the
“demo_wavs/noises” directory. Other noise samples that might be useful can be found in the freely
available NOISEX database. See: http://spib.rice.edu/spib/select noise.html

Show the cJob class where to find the sound files

The main job class (defined in clob.m) needs to know the location of the speech material. The
speech material can be stored at any location on the user’s computer, but the following piece of
code needs to be updated accordingly. If different computers on different platforms are used then
the paths can be set accordingly. For example, | use a windows machine in the office, a Mac at
home, and a Linux machine to run large jobs. All of these systems store the corpora in different
locations.

The code supplied points to the small demo corpus provided with this tutorial. The path of the demo
material is relative to the tutorial folder, but this would not normally be the case when using very
large corpora. In most circumstances, you would probably specify the full path.

it isunix

if ismac
IWAVpath = fullfile("demo_wavs®, "TrainingData-Clean®);
rWAVpath = fullfile("demo_wavs®, “TripletTestData®);
obj.noiseFolder = fullfile("demo_wavs®, "noises®);

else
IWAVpath = fullfile("demo_wavs®, "TrainingData-Clean®);
rWAVpath = fullfile("demo_wavs®, “TripletTestData");
obj.noiseFolder = fullfile("demo_wavs®, "noises®);

end

else
IWAVpath = fullfile("demo_wavs®, “TrainingData-Clean®);
rWAVpath = fullfile("demo _wavs®, “TripletTestData®);

obj.noiseFolder = fullfile(“demo_wavs®, "noises®);
end
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Setting an output folder

The speech recognition experiments involve generating a large number of files that need to be
stored somewhere. It is possible to change the output folder on an experiment by experiment basis,
but the user may wish to have a top level directory in which all ASR data is stored. To do this, find
and amend the following code segment.

it isunix
if ismac
obj.opFolder = "~/ASR/exps/_foo";
else
obj.opFolder = "/scratch/nnn/exps/_foo";
end
else

obj.opFolder = "D:\exps\_foo";
end

Exp_Tutorial_1

Training and testing a recogniser

If everything has been set correctly, it should now be possible to run Exp_Tutorial_1 without
generating errors. This function can be used as a template to run all kinds of recognition
experiments. The following text breaks down each part of the function, describing what happens in
each block of code. If an error is encountered, then delete the output folder and recheck the path
settings described in the previous section.

A quick overview of the functionality
It may be useful to give a brief summary of the operations performed by Exp_Tutorial_1 before
analysing the code in great detail.

e Arandom selection of wav files from the training corpus is chosen to use for training the
recogniser.

e These files are passed through the auditory model and turned into feature files that are
written to disk in an HTK compatible format.

e The HMM is then trained using an iterative process, and the results from each iteration of
this process are stored in a separate subdirectory of a main hmm directory.

e Arandom selection of wav files from the testing corpus is chosen to use for testing the
recogniser.

e To answer experimental questions, alterations are made to the speech stimuli, such as the
addition of noise. Features are generated for all of the test wav files like in the training
phase. For each different experimental variation in parameters, such as a unique SNR or
alteration to the auditory model, the feature files are stored in a unique numbered
directory.

e For each test directory, the recogniser generates a script of digits that is suspects are within
each feature file. These data in the scripts are finally converted to a simple % correct score.
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Parallelism
The first line of the file declares the function and states that it takes one input argument,
“isMasterNode”.

function Exp_Tutorial_l(isMasterNode)

Speech recognition experiments are very processor intensive, so the software suite has been
carefully designed to run in parallel across many instances of Matlab. This allows results to be
generated in a fraction of the time of a serial process if enough computing power is available. The
simple scheduling software is written in Matlab and included in the files provided. The variable in the
function definition above, “isMasterNode”, is a Boolean type that lets the current Matlab instance
know if it is the master node.

The master node is the most important node, responsible for generating all of the job information
and interfacing with HTK. Because the master node has the responsibility of generating the job lists
and storing them, the variable “isMasterNode” must be set to true when the experiment function is
first called. While the experiment is running in one Matlab instance, it is then possible to share the
workload by running the same command in another Matlab instance with “isMasterNode” set to
false. In theory, there is no upper limit to the number of helper nodes.

Under windows, the simplest way to do this is to open a few Matlab instances and then set the
experiment running with one master node. The other Matlab windows can be used as helper nodes.
The demo experiments are designed to run entirely in the command window. No other aspects of
the Matlab integrated development environment are needed. Therefore, small performance gains
may be attained by running Matlab from the command prompt with the flag “-nodesktop”. This will
run Matlab with the command window only. From there, just change directory to the working
directory and invoke the experiment function from the command line. Trial and error must be used
to find the optimum number of Matlab instances for a specific machine.

This setup is particularly powerful in a Unix-like environment when used in conjunction with GNU
screen http://www.gnu.org/s/screen/. From each virtual terminal, a separate, low-resource instance

of Matlab (a node) can be launched with the command flag “-nodisplay”. Each node can then spread
the job load as in the Windows example. If a number of separate machines are available with access
to the same network attached storage, then the nodes can be spread across the different machines,
with multiple nodes running on each machine. Of course, these machines can be running a mixture
of any operating system supported by Matlab.

Experiment data directory structure

The speech recognition experiment process involves creating many small configuration and data
files. All of the files and folders listed below are created automatically by the Matlab scripts in
conjunction with 3" party software. The hierarchy chart below shows the directory structure
generated for a typical experiment. All files related to a particular HMM are stored within a top-level
experiment folder. The experiment folder contains at least two other folders. These are the HMM
directory and the “featL” directory. There can also be any number of folders containing test features.
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i —

Experiment
folder

Features_X.mat

jobObject.mat

testData List.scp

Result.mlf

—

Tmp.list

The HMM directory contains numbered hmm subdirectories that each contain a different version of
the HMM after the sequential parameter re-estimations that occur during the training stage. The
hmm36 folder contains the most refined HMM by the end of the training process that is then used
to evaluate the experimental data. The HMM directory also contains a file called “tmp.list”. This is
just a data file used by HTK to locate the training material. Finally, there is a file called
“proto_AutoGen”. This is a plain text file containing an automatically generated prototype HMM for
HTK to use to begin the training process. It is created from the cHMM class according to the property
values at the beginning of the training process.

The “featl” directory contains the training features. The “L” is used to signify learning as opposed to
“R” for recognition. This is to avoid the obvious confusion that might arise if single character
representations were used for training and testing features. The “L” and “R” abbreviations are also
used throughout the software scripts. Contents:

e The saved training feature files correspond to individual wav files and thus have the same
file names but with a “.mat” instead of a “.wav” extension.

e The “featl” directory also contains a file called labels.mlf. This text file explains the digits
contained within each feature file in an HTK readable format.

e The list.scp file is a text document with the names of all of the feature files in the folder that
HTK should use for training the recogniser.
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The last file type in the training and testing feature directories is the “jobObject.mat” file. This is a
Matlab readable data file containing a copy of the instance of the “cHMM” class associated with the
data set. This data object contains all of the information about the experiment, including MAP
parameters, HMM parameters, and other instructions on how to generate features. Each processing
node loads this object when initialised, so that it knows how to process the wav files appropriately.
Each node processes a randomly assigned set of wav files and then updates this data object so that
other nodes know which files are not yet processed, which files are currently cued for processing,
and which files have been processed.

There can be an unlimited number of test data folders. The contents of these folders are each very
similar to the “featl” directory, but contain test features. Furthermore, if the recogniser has been
tested with the test features in that folder, the folder will also contain a result.mlf file. This is a text
file that lists all of the files in the folder along with the digits that the recogniser has decided that
they most likely contain. A simple % correct score can be extracted from the result file using a static
method built into the “clob” class definition. Each test data folder contains test features for a single
condition, so if the user wanted to evaluate the recogniser at 5 different SNRs, then 5 data folders
would be required with a name that uniquely identifies that particular condition.

Returning to the analysis of the experiment function, the following code organises the directory
structure.

%%  %%%%%6%%%%%%%6%%%%%%%%%%%%%6%%%%%%%6%% %% %% %% %% %% % %% %% 6% %% % %6%6%6% %% %% % % %% %%
% Set up the basic folders

00/ 0/ 00/ 040/ 00/ 0/ /20 0/ 0/ 0 0/ O/ 0/ O/ 0/ 0/ O 0/ O O/ O/ O/ O/ O O/ O/ 0/ O O/ O/ O /s O/ 0/ O O/ 0/ O/ O/ O 0/ O O/ O/ O 0/ O 0/ O O/ O/ O/ O/ O O/ O/ O/ O/ O O/ O O/ O/ O/ O/ O 0/ O/ /0,
(A A A A A A A A A A A A ) VNN

expName = "Tutorial”;
dataFolderPrefix = "featR";
if Isunix
expFolderPrefix = "/scratch/nrclark/exps/*;
else
expFolderPrefix = "D:\Exps”;
end

expFolder
hmmFolder

fullfile(expFolderPrefix,expName);
fullfile(expFolder, "hmm®);

The experiment name is defined by the variable “expName”. This is the name of the top-level folder
that contains training features, testing features, and the HMM.

The “dataFolderPrefix” variable is a character string that precedes each folder containing test
features. Typically, the user will create a HMM and iteratively test it, tweaking parameters according
to conclusions drawn from previous results. For example, the user could give the first test of the
HMM the “dataFolderPrefix” of “first_test”. This would be the prefix for each of the folders that
make up the recognition curve. The rest of the folder name will be derived from a parameter that
would typically be SNR, but could be anything else. Based on the results, the user may later decide
to change the MAP parameters, but test the existing, trained HMM using these new parameters. All
the user would need to change would be the “dataFolderPrefix” and the appropriate parameters.

The last user definable parameter is the “expFolderPrefix”. This the naming prefix used for each of
the testing data folders. The prefix is set to “featR” in the example to be a logical companion of the
“featl” folder. However, a unique prefix needs to be chosen if the experiment folder is to be
recycled (full details in tutorial 2).
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Set some general parameters
Once the directory structure has been sorted, the next bit of code organises how the recogniser will
be trained.

%%  %%%%%%6%%%6%%%6%%%6%%%6%%%6%%%%6%% %% % 6% % 6% % %6%%%6%6% % %% % %% % %% % 6% % Y6%%%6%% % %% % %% % %% %%
% Sort out the training (LEARNING) condition
%9%6%%%%0%%%6%%%6%%%6%%%6%%%6%%%6%%% %% % %% % %6%%Y6%%%6%%%6%6%% %% % %% % %% % %% % Y6%% %6 %% % %% % %% % %% %%
learnFolder = fullfile(expFolder, “featlL");

XL = cJob("L", learnFolder);
XL.participant = “Normal~;

XL .MAPparamChanges= {"DRNLParams.rateToAttenuationFactorProb=0;",
"OMEParams. rateToAttenuationFactorProb=0;" };

XL.noiseLevToUse = -200;
XL.speechLevToUse = 60;
XL .MAPOpHSR = 1;
XL.MAPOpMSR = 0;
XL_.MAPOpLSR = O;

XL.numCoeff = 14;
XL.removeEnergyStatic = 0;

%%%%% Group of params that will influence simulation run time %%%%%%%
XL.numWavs = 10; %MAX=8440

testWavs = 5; %MAX = 358

nzLevel = [-200 40:10:70];

%6%%6%%%%%6%%%%%%%6%% %% %%%6%% %% %% %% %% %%%% % %% %6%6%% % %% %% % %% %% % %% %% %% % %% %%

XL.noisePreDur = 2;
XL.noisePostDur = 0.1;
XL.truncateDur = xL.noisePreDur-0.1;
XL.noiseName = "pink_demo”;

An object of the “clob” class is instantiated and assigned to the variable “xL”. The “clob”
constructor® is called with two arguments. The first argument is a flag telling the object that it is a
training/learning job. The second argument is a path to where that job should put all of its data.

Once “xL” is defined, many of its default properties can be modified. The default properties can be
found by either looking through the lines of code at the top of the class definition, or looking
through the “xL” object just after instantiation using the debugger (All properties and member
functions are described in the Appendices).

The participant property is the name of the parameter file to use in the “parameterStore” folder of
MAP. The “MAPparamChanges” property allows the user to specify any deviations from the
parameters specified in the parameter file. For this tutorial, the acoustic reflex and cochlear efferent
feedback loops are disabled by setting the appropriate rate to attenuation factors to zero.

The next two properties control the noise and speech levels, where the values are RMS dB SPL. The
Boolean “MAPop*” properties determine which groups of auditory nerve (AN) fibres - categorised
by spontaneous rate - are used to make the auditory spectrogram. To switch between, or combine

! http://en.wikipedia.org/wiki/Constructor (object-oriented programming)
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AN fibre types, the user must have specified more than one spontaneous rate in the MAP parameter
file. This is done by adding values to the “tauCa” array (see MAP documentation for full details).

For purposes of data reduction, the auditory spectrogram is transformed into 10-ms segments and
the spectrum at each epoch is data compressed using the DCT. The first and second order
differences with respect to time are also extracted from the DCT coefficients and fed to the
recogniser. The “numCoeff” property determines the number of DCT coefficients used to encode the
auditory spectrogram at each epoch. The Boolean “removeEnergyStatic” property allows the user to
remove the first DCT coefficient, but retain the difference values. In the tutorial example, the static
energy coefficient is retained.

The subsequent few lines of code are enclosed in a comment block stating that they significantly
influence the simulation run time. The first of these commands sets the “numWavs” property of
“xL”. For this object, this is the number of wav files to be included in the training corpus. The more
wav files used for training, the better the results will be in the testing phase. However, training time
grows linearly with the number of “wavs” used while the returns diminish when using more than
1000 wav files (in the authors experience with this model, recogniser and speech corpus). If the
computational resources are available, then there is no reason not to use the entire 8440 wav files,
but general comparisons can be made by looking at results from a recogniser trained on as few as
600 wav files. In the tutorial example, 10 wav files are used for training. When training, HTK will give
warning messaged in the Matlab command window stating that there are too few examples of each
of the digits in the dictionary. This will produce garbage results, but will assert whether or not the
software suite and paths are set correctly for the first run. The user can then experiment with larger
training corpora when convenient. The next two lines of code within the block are not properties of
“xL”, but are local function variables. These variables are associated with the testing phase of the
experiment but are defined in this block as they also significantly influence the run time of the
experiment. The variable “testWavs” is the number of wav files that should be used for testing the
recogniser in each experimental condition. Again, the greater the number, the less variance in the
results for a repeated test. However, this is also at the expense of run time. The variable nzLevel is
an array of noise levels (dB SPL) to use when testing the recogniser. In the tutorial example, noise
levels are sampled every 10 dB. The granularity of the level sampling must be considered as the run
time of the simulation will depend on the total number of testing conditions.

The lines of code at the end of the snippet shown above are related to the background noise. The
“noisePreDur” property determines the duration of noise (in seconds) to be presented to MAP in
isolation before the onset of the speech material. The MAP model contains numerous temporally
dynamic processes and it is important to allow them to reach equilibrium before the onset of the
speech material. One second is normally more than enough lead in time for the noise. However, if
the user wished to experiment with particularly long time constants in any pre processing, such as
the MAP model or hearing aid, then the pre roll should be at least 3 times greater than the longest
time constant. This is because values returned from a sliding exponential integration window are
only negligible at time intervals greater than 3 multiples of the time constant. The “noisePostDur”
property determines the duration of noise (in seconds) to be presented to MAP in isolation after the
offset of the speech material. The “truncateDur” variable determines the duration of the noise
added at the beginning of the composite speech and noise sample to be discarded before the
feature vector is saved. The truncation occurs after the auditory spectrogram has been generated, as
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there is no need to retain information about the excess noise added to the start of the stimulus. The
truncation has three main benefits:

i) Truncation saves disk space. This is an important consideration when generating 1000s
of feature files.

ii) The amount of data used in training and testing the HMM is reduced and so execution
time is faster.

iii) In the tutorial example, the resulting auditory spectrogram has 100ms of noise
information at the beginning and end of the stimulus. This helps to give a more robust
silence model in the trained HMM.

The final property in this group is “noiseName”, which is a string containing the name of the noise
wav file.

Saving the training job in preparation for processing
The final bit of code relating to the training of the recogniser before the actual act of training the
recogniser is given below.

LINE 51 ....
iT IsMasterNode && ~isdir(xL.opFolder)
mkdir(xL.opFolder);
XL = xL.assignFiles;
XL.storeSelf; % This is a call to a member function and is NOT a pointless line of code!

end

The first command within the ‘if’ statement block creates the new experiment folder. The second
command executes a member function called “assignFiles” within the “xL” object. This member
function randomly allocates wav files from the appropriate corpus to the training job and sets a flag
associated with each wav file stating that the wav file has not yet been converted into a feature
vector. This code block only executes if the function is running as the master node (as defined when
calling the function) and if the directory does not exist. Should a failure occur such as a crash or
power outage, this allows the user to resume work on the speech recognition job by just running the
experiment function again. If the user wishes to restart a job, perhaps because of a typo when
setting a parameter, then the experiment directory must be renamed or deleted, or the experiment
name in the function must be changed. Otherwise, the function will attempt to complete a partially
completed job.
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Setting parameters for the testing job

Up to this point, the code in the tutorial function has been used to set parameters. No training of the
recogniser has occurred at this point. The code described in this section finalises the setting of the
testing parameters before the training and testing commences.

LINE 58 ....
%%  %%%%%6%%%%%%%6%%%%%%%6%%%%%%6%%%%%%%6%% %% %%%6% %% %% %% % %% %% %% %% % %6%6%6%% % %% %% %% %%
% Sort out the testing (RECOGNITION) conditions

00/ 0/ 00/ 040/ 00/ 0/ 0/A0/ 0/ 0/ 00/ O/ 0/ 0/ 0/ 0/ 0/ 0/ O O/ O/ O/ O/ O/ O/ O/ 0/ O/ O/ O/ O /s O/ 0/ O O/ 0/ O/ O/ O O/ O O/ O/ O 0/ O 0/ O O/ O/ O/ O/ O O/ O O/ O/ O O/ O O/ O/ O/ O/ O O/ O/ /0,
{0V AV A A B A A A A A A A O i i i) VNN

recConditions = numel(nzLevel);

tmpldx=0;

for nn = O*recConditions+1:1*recConditions
tmpldx=tmpldx+1;
XR{nn} = xL; %simply copy the *"Learn'" object and change it a bit below
recFolder = fullfile(expFolder,[dataFolderPrefix num2str(nn)]);
XR{nn}.opFolder = recFolder;

%These are the interesting differences between training and testing
XR{nn}.numWavs = testWavs; %MAX = 358

XR{nn}.noiselLevToUse = nzLevel (tmpldx);

XR{nn}.MAPparamChanges= {"DRNLParams.rateToAttenuationFactorProb=0;"};

%Now just to wrap it up ready for processing

if iIsMasterNode && ~isdir(XR{nn}.opFolder)
mkdir(xR{nn}.opFolder);
XR{nn} = xR{nn}.assignWavPaths("R");
XR{nn} = xR{nn}.assignFiles;
XR{nn}.storeSelfT;

end

end

When testing a recogniser, the user will normally want to try groups of parameters that are
variations on a theme so that trends can be observed. The example given in the code generates an
array of recognition jobs that are indexed by the counter “nn”. Each job tests the speech material at
a single SNR. The block of code shown does this with no cochlear efferent attenuation as defined by
the “MAPparamChanges” property. In the tutorial function, there is another for loop block, below
the one shown here in the text. It is identical in every way apart from the “MAPparamChanges”
property and the range of the “nn” index variable (more on this below). An unlimited number of
these for loop blocks can be pasted one after another, so long as care is taken to update the index
variable defined just after each “for” statement.

The integer “recConditions” variable represents the number of recognition conditions for each
parameter variation. It is defined as the number of noise levels in this tutorial example, as it is fairly
common to test a recogniser at a range of SNRs. The “tmpldx” variable is a temporary index. As the
name suggests, it is a resettable counter. The resetting occurs prior to each new “for” loop block.
The “tmpldx” counter is used to index a parameter that would normally be plotted as the x-axis on
the results graph once the results have been generated. Conversely, the “nn” counter is a unique
identity variable for each job in the experiment. It counts up from 1 to any value and is generally
used when naming the folder of each job to prevent conflicts.

The first important line in the loop block is the statement “xr{nn} = xL“. Each test condition job is
initialised as an exact copy of the training job that can be subsequently modified. The ability to
perform this single operation was the main motivation for choosing an object oriented design. The
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test (or “R” for recognition) job is placed into a cell array with the index “nn”. The current
experiment has 5 noise levels and 2 different sets of parameters, so the “nn” index will count from 1
to 10. The counter value is appended to the “expFolderPrefix” string to make a unique folder name
for the testing features for that specific parameter set and SNR.

The next three lines under the comment “These are the interesting differences between training
and testing” define the differences between the training and testing conditions. In the tutorial
example, the number of wav files is changed, the noise level is set, and a call to
“MAPParamChanges” is made. The parameter change specified here is redundant as it is already one
of the parameters of the training job. However, to improve code readability, one can never be too
specific. The final lines in the “if” statement block store each job ready for processing. This is
accomplished using the same methods described to store the training job.

LINE 85 ....

tmpldx=0;

for nn = 1*recConditions+1:2*recConditions
tmpldx=tmpldx+1;
XR{nn} = xL; %simply copy the *"Learn'"™ object and change it a bit below
recFolder = fullfile(expFolder,[dataFolderPrefix num2str(nn)]);
XR{nn}.opFolder = recFolder;

%These are the interesting differences between training and testing
XR{nNn}.numWavs = testWavs; %MAX = 358

XR{nn}.noiseLevToUse = nzLevel (tmpldx);

XR{nn}.MAPparamChanges= {"DRNLParams.rateToAttenuationFactorProb=-10"(-10/20);"};

%Now just to wrap it up ready for processing

if IsMasterNode && ~isdir(xR{nn}.opFolder)
mkdir(XR{nn}.opFolder);
XR{nn} = xR{nn}.assignWavPaths("R");
XR{nn} = xR{nn}.assignFiles;
XR{nn}.storeSelf;

end

end

There is also a second for loop that generates another set of jobs for the recogniser, but using a
fixed, 10-dB SNR cochlear efferent. This change is applied when the “MAPparamChanges” property
is redefined. Another subtle difference is in the for loop statement line where “nn” is defined as
1*recConditions+1:2*recConditions, instead of 0*recConditions+1:1*recConditions. This is to keep
job identities and folder names unique.

Notes on performance warnings

The tutorial example function produced numerous M-lint warnings relating to expanding array sizes
within for loops. These warnings can be safely ignored as the performance hit is negligible relative to
the computation time required to produce each feature vector. Memory allocation of arrays would
complicate the script and provide no measurable performance benefits in this instance.
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Feature Generation

Once the “jobObject.mat” files for training and testing have been created, the features can be
generated. This is the most time consuming and computationally expensive part of the procedure.
Even so, the code in the experiment function to do the feature generation is remarkably simple once
the jobs have been created.

There is a script in the software suite called worker. This takes a single job object as a variable and
will busily perform the task of converting wav files into feature vectors until all of the wav files in the
list have been converted. The code below shows the order in which the jobs are processed.

LINE 115 ....
worker (xL.opFolder);
maxConds = nn;
if ~isMasterNode %dont bother wasting master node effort on testing jobs (for now)
for nn = 1:maxConds
worker (xR{nn}.opFolder);
end
end

All nodes are assigned the task of generating the training features first. Once the training features
have been generated, the subsequent “if” statement only allows slave nodes to generate the testing
features. This is so the master node can get on with training the recogniser using the freshly
generated training features ready for when the test features become available. The training of the
recogniser can only be done on a single node. Therefore, it is more efficient to have the recogniser
being trained while other nodes are still generating features, rather than stop all nodes to wait for
the recogniser to be trained before doing anything else.

Training and testing the recogniser
The following block of code initializes the training of the recogniser.

LINE 122 ...
%%  %%%%%%%%% %% %% %% %% %% %% %% %6666 %6666 %6666 %6666 %6%6%6%6%6%6 6669696069666 %6%6%6%6%6%6%6%6%6%6%
% Train and test the recogniser - a job for the master node only
%0%%%%%%%%%%%%%%%%%%%%% %% %% %% %% %% %% %% %6%6%6%6%6%6%6%6%6%6%6%6%6%6%6%6%6%6%6%6%6%6%6%6%6%6%6%6%6%6%6%6%6%6%6%6%6%
if iIsMasterNode
while(~all (xL.todoStatus==2))
disp(“Waiting on straggler nodes to complete their jobs before HMM is trained . . .%)
pause(30); %Wait for 30 seconds before looking again
XL.lockJobList;
XL = xL.loadSelf; %Reload in case changed
XL .unlockJobList;
end

As the comment block in the above code snippet suggests, the remainder of the function is for the
attention of the master node only. The while loop checks every 30 seconds to see if the training
features have all been created before moving on to actually training the HMM. Each element of the
integer array property “todoStatus” can be set to 0, 1, or 2. Each element of the array corresponds
to a wav file in the processing list. A value of 0 means that the wav file is open for any node to grab
for processing, a value of 1 mans that the wav file has been grabbed by a node and will be processed
shortly, a value of 2 mans that a feature file has been successfully created for that particular wav file.
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The member function “locklobList” places a file mutex? into the current job folder to stop any other
nodes editing the job file while it is being inspected by the master node. The member function
“loadSelf” updated the job stored in master node memory from the job file on disk. The job file on
disk may have been changed by a slave node since it was last checked by the master node. The
member function unlockloblList removes the file mutex once the inspection is complete, enabling
slave nodes to update the job file if necessary.

LINE 133 ....

y = cHMM(hmmFolder);

y.numCoeff = (XL.numCoeff-logical (XL.removeEnergyStatic)) * 3;

y.createSCP(xL.opFolder)

y.createMLF(XL.opFolder)

y.train(xL.opFolder) %This node can be busy training, even if test jobs are being processed

Once all of the training features have been generated, a HMM class is instantiated by passing the
path of the hmm to the constructor. If the hmm folder already contains a trained HMM (this would
be signified by the existence of an appropriate model file in the HMM folder), then the HMM class
will accommodate this, allowing the user to easily recycle trained recognisers. In the tutorial
example, the HMM folder is empty and so a new recogniser must be created.

Once the recogniser has been created, the “numCoeff” property is changed. This refers to the
number of coefficients in the feature vector at each time epoch. In the example given, the number
of coefficients in the HMM object property is three times the number of DCT coefficients specified in
the job object property because deltas and accelerations of the features must be included. The
HMM class will then automatically generate the appropriate HMM prototype given this value.

The member function “createSCP”, generates a list file with the “.scp” extension in the hmm
directory. Remember form earlier, that the “list.scp” is just a big list of feature vector names
required by HTK. Similarly, the “createMLF” member function generates a script in an HTK
compatible format to tell the recogniser what digits the feature files actually contain. Finally, the
member function “train” wraps up the complex list of HTK commands required to train a recogniser
into a simple function.

LINE 139 ....
% ALLOW MASTER NODE TO MUCK IN WITH GENERATING TESTING FEATURES ONCE
% HMM HAS BEEN TRAINED
for nn = 1:maxConds
worker (xR{nn}.opFolder);
end

Once the recogniser has been trained, the code pasted above allows the master node to join in with
generating testing features. If the recognition experiment is running using just a single node then the
generation of testing features will commence at this point.

? For information about mutual exclusion in parallel software http://en.wikipedia.org/wiki/Mutual exclusion
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LINE 145 _ ...
XR{end}. lockJobList;
xR{end} = xR{end}.loadSelf; %Reload changes
XR{end}.unlockJobList;
while(~all (xR{end}. todoStatus==2))
disp(“Waiting on straggler nodes to complete their jobs before HMM is tested . . .*%)
pause(30); %Wait for 30 seconds before looking again
XR{end}.lockJobList;
xR{end} = xR{end}.loadSelf; %Reload incase changed
XR{end}.unlockJobList;
end

for nn = 1l:maxConds
y.createSCP(xR{nn}.opFolder);
y.test(XR{nn}.opFolder);

end

Once the testing features have been created, a check is made to see if all of the jobs have been
completed before anything else happens. Each node allocates between 8 and 16 wav files to itself at
a time, so it is common for the master node to have to wait a few minutes at this stage if more than
1 node is being used. Once the waiting is over, an SCP file is created like for the test set, but no MLF
file is needed as the testing procedure produces its own MLF. The recogniser generated MLF file is
later used to derive an accuracy score.

LINE 161 ....
%Show all of the scores in the command window at the end
for nn = 1:maxConds
y.score(XR{nn}.opFolder);
end

The final bit of code in the script scores the recogniser generated MLF script against the actual digits
contained within each feature file. For this, a static method is used in the cHMM class rather than
the scoring tools bundled with HTK. The Matlab code gives a correct score only when the correct
digit is identified in the correct position within the triplet. In contrast, the HTK scoring tools use a
dynamic programming strategy. The score method displays both the percent correct word score and
percent correct sentence score. The word score is based on each individual digit and the sentence
score is based on the recogniser identifying every digit correctly in a triplet. Score is a static method
and so it can be used from the command line given any folder containing appropriate files without
the associated object. The demo will output scores for each of the 10 test folders in the same order
that the test folders were created in.

Explore
If you have time, try enlarging the number of files included in the training and testing sets. Using
over 1000 files for training should produce recognition scores that are not garbage.
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Exp_Tutorial_2

Overview

The previous tutorial script demonstrated a method for training and testing an automatic speech
recogniser using two different sets of parameters in the testing stage. The second tutorial script
shows the user how to recycle an existing HMM, and how to attach a hearing aid simulation to the
front-end of the model.

Code walkthrough
The script associated with this second tutorial is called Exp_Tutorial_2.m. Rather than dissect each
individual line of the script, only particular lines of interest are discussed.

expName = “Tutorial”;
dataFolderPrefix = “hello_world_recycle”;

The variable expName has the same value as in the previous tutorial. The software will then be able
to find the pre-trained HMM in this folder. The data folders are given a different prefix, so that they
are not confused with the testing features generated in the previous tutorial.

From here downwards, nearly all lines of code are identical to the previous example, with the
exception of the following excerpt that is commented out.

% iFf isMasterNode && ~isdir(xL.opFolder)

% mkdir(xL.opFolder);
% XL = xL.assignFiles;
% XL.storeSelT;

% end

There is no need to store the learning parameters as in this tutorial because there is no need to train
a new recogniser. However, the learning parameters still need to be defined in memory because the
testing jobs start life as identical copies of the training job that are subsequently modified. An
alternative (and more robust) method for doing this would be to load the old training job from disk
and then modify the parameters from there, but for reasons of clarity, the parameters are explicitly
redefined in the tutorial script.

Once the training parameters have been recalled, the testing jobs are then created by cloning and
changing the original parameters. The first testing job makes the following changes.

%These are the interesting differences between training and testing
XR{nNn}.numWavs = testWavs; %MAX = 358

XR{nn}.noiseLevToUse = nzLevel (tmpldx);

XR{nn} .MAPparamChanges= {"DRNLParams.a=400;"};

The first two lines of code set the number of test wav files to be converted to features and the noise
levels that the recogniser should be tested at. The third line simulates an outer haircell dysfunction
by reducing the gain applied to the non-linear path of the DRNL (Refer to Manassa Panda’s 2010 PhD
Thesis for more information). An ‘a’ value of about 400 should raise the pure tone thresholds of the
dummy by approximately 20 dB relative to a normal hearing dummy, although this is highly
dependent on the ‘Normal’ parameter file used, so the actual observed shift may vary. A reduction
in the ‘a’ parameter also reduces the dynamic range of the compressive region of the basilar
membrane input/output function, that in turn reduces the dynamic range of amplitude information
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that can be conveyed by the AN fibres. Furthermore, a desensitised outer-periphery will be a less
effective driver of the efferent reflexes that are controlled by signals present in the inner periphery.
As a result of this simulated impairment, the recognition scores generated from this testing job
should be far worse than those generated from the unimpaired model in the previous tutorial so
long as the numbers of testing wavs used are sufficient.

The script also defines a second testing job with the following parameter modifications

%These are the interesting differences between training and testing
XR{nn}.numWavs = testWavs; %MAX = 358

XR{nn}.noiselLevToUse = nzLevel (tmpldx);

XR{nn}.MAPparamChanges= {"DRNLParams.a=400;"};

XR{nn}.mainGain [27.2013; 26.0797; 26.0939; 26.7997; 26.0520]; % gain

XR{nn}.TCdBO = [37; 37; 37; 37; 37] %Compression thresholds (OUTPUT 2nd filt)
XR{nn}.TMdBO = [20; 20; 20; 20; 20]; %MOC thresholds (OUTPUT from 2nd filt)
XR{nn}.ARthresholddB = 85; % dB SPL (input signal level) =>200 to disable
XR{nn}.MOCtau = 1;

XR{nn}.useAid = 1;

The first three lines are the same as for the previously defined set of testing jobs. The set of lines
under the blank line define hearing aid parameters. The last of the parameters is called useAid,
which slots the hearing aid processing in before the MAP model when set to true.

The full list of hearing aid parameters can be found in the job class around line #100. The parameters
and wrapper function for the Essex aid are all discussed in a companion document. It should be
relatively simple for any competent Matlab user to swap out the EssexAid algorithm and drop in
their own code to test the potential benefits of different hearing aid processing strategies. All the
user would need to do be to swap out the line (~542 at last check) in the job class:

stimulus = EssexAid_guiEmulatorWrapper(stimulus, sampleRate, obj);

This line can be replaced with any signal processing strategy that takes the raw stimulus in pascals,
returning the processed stimulus, also in pascals.

Once the jobs have been defined that recycle the previously created HMM, the testing jobs can now
be worked on. There is no need to create the training jobs in this tutorial and so the appropriate line
has been commented out.

% worker(xL.opFolder);
maxConds = nn;
if ~isMasterNode for nn = 1:maxConds
worker (xR{nn}.opFolder);
end
end

Similarly, in the final code segment, all lines referring to training the recogniser have been
commented out as this is not a requirement when recycling a HMM.
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Using the HMM class helper methods

The HMM class has many small helper methods built in that allow the user to perform common
tasks with ease. For example, an HMM object can be initialised from a folder containing a trained
HMM by issuing the following command:

>>y = cHMM(pathToTrainedHMM) ;

This HMM can then be tested on any folder containing test features, so long as the features are
compatible with the HMM (i.e. correct number of elements per vector). This process is relatively fast
compaired to the training phase.

>>y._.createSCP(pathToTestFeatures);
>>y _test(pathToTestFeatures);

Another useful helper function is the static method “score”. This returns the word and sentence
scores for a given folder in percent correct and does not even requite an object of the class to run. It
can be called using the class name or an object name as the prefix:

>>cHMM.score(pathToTestFeatures);

Combined, the helper functions make it very easy to recycle old HMMs for testing with new data or
vice versa.
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Appendix A: cJob properties and member functions

Publicly Accessible Properties
wavFolder — This is the path to the directory containing the speech wav files.

opFolder — This is a path to the directory where the features should be stored once they have been
created.

noiseFolder - This is the path to the directory containing the noise wav files.

wavlist — This is a structure array of directory information about all of the wav files to be used in the
current job. While this property is public, it is quite difficult to set by hand and the appropriate
member function (assignFiles) should be used to populate this array in most instances.

todoStatus — This is an integer array where each element refers to an individual wav file. The values
can either be O=not started, 1=assigned to a node and not started or being processed, 2=completed
and feature file successfully written. Under most circumstances, the user will never directly access
this property.

participant ='Normal' — This is the name of the parameter file for MAP to use.

noiseName = '8TalkerBabble'; - This is the name of the wav file to use for the background noise.
numWavs = 5; - This is the number of wav files to use. It determines the length of the wavlList array.
noiseLevToUse = -200; -This is the level of the background noise in dB SPL RMS.

speechLevToUse = 50; - As above but for speech.

speechlevStd = 0; - The standard deviation (in dB) of the speech levels between successive wav files.
Training a recogniser over a range of speech levels can give more robust recognition performance
when testing at different speech levels at the expense of peak performance.

noiseLevStd = 0; The standard deviation (in dB) of the noise levels between successive wav
files. Training a recogniser over a range of noise levels can give more robust recognition
performance when testing under different noise levels at the expense of peak performance when
the recogniser is trained and tested at the same SNR.

freezeNoise = 0;- By default, the background noise added to the speech is a randomly selected
portion from a long array. Setting this property to true stops the randomisation so that the noise is
always selected from the first element in the array.

speechDist ='None'; - The distribution of the random speech levels (Gaussian/Uniform/None)
noiseDist ='None'; - The distribution of the random noise levels (Gaussian/Uniform/None)
meanSNR = 20; - This variable can be set to maintain a SNR if a random noise distribution is used.

noisePreDur =0.0; - How long (in seconds) the background noise should run before the onset of the
speech material.
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noisePostDur = 0.0; - How long (in seconds) the background noise should run after the offset of the
speech material.

truncateDur = 0.0; - How much of the noise added prior to the onset of the speech material should
be removed after the feature has been generated. It is normally necessary to allow the dummy to
settle into an adapted state before hitting it with speech material, hence the noise added before the
speech onset. However, once the features have been generated then the noise can be removed to
save disk space.

currentSpeechLevel — Internally used variable: do not edit — SHOULD NOT BE
PUBLIC!?

currentNoiseLevel — Internally used variable: do not edit — SHOULD NOT BE
PUBLIC!?

useSpectrogram = false; - Uses a simple fft-based spectrogram in place of the auditory spectrogram
generated using map.

numCoeff = 9; - the number of DCT coefficients to use at each epoch from the auditory spectrogram.

The following group of properties can be set to Matlab axis handles. If set, the object will plot the
associated data as each wav is processed. This gives the user a window into the output of different
stages when running the speech recognition experiment.

probHaxes = []; - Firing rate probability

probHaxesSM = []; - as above after temporal smoothing into 10ms bins
featHaxes = []; - features from DCT

reconHaxes = []:; - either sacf or rate features reconstructed from

the DCT coefficients. This gives the user some insight into whether a
sufficient number of coefficients are being used to encode the interesting
portions of the features.

The following group of properties are associated with the SACF should the user decide to make
features from the SACF rather than directly from the firing rate probability. Refer to the MAP
documentation for specific details on these parameters. SACF features are not used in the tutorials,
but the code makes a good starting point to begin making custom feature types.

useSACF = false;

SACFacfTau =2; % > 1 = Wiegrebe mode
SACFnBins = 128;

SACFminLag = 1 / 4000;

SACFmaxLag =1 / 50;

SACFlambda = 10e-3;
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The following group of properties are associated with MAP

MAProot = fullfile('.."); - Path to the root directory of map

MAPplotGraphs = 0; - Determine whether to use MAP’s own plot routines each time it is called
MAPDRNLSave = 0; - Save the basilar membrane motion after each run for exploration.
MAPopLSR = 0; - Use low spontaneous rate AN fibres in the generation of rate features
MAPopMSR = 0; - Use medium spontaneous rate AN fibres in the generation of rate features
MAPopHSR = 1; - Use high spontaneous rate AN fibres in the generation of rate features

MAPparamChanges = {}; - Parameter values that differ from those specified in the file.

The following group of properties are related to HTK.
frameshift =10; Frame ratein ms

sampPeriodFromMsFactor = 10000; This number is appropriate for a 10 ms window. Refer to the
HTK book for details.

paramKind =9; 9 is a code that specifies that a user defined format is to be used. See page 73 of the
HTK book for more details.

removeEnergyStatic = false; - If set to true, the first DCT coefficient will be removed before the
feature vector is saved to disk. This removes information about the overall level of the stimulus and
will also preven deltas and accelerations from being calculated from the first coefficient.

doCMN = false; Option to use cepstral mean normalisation.

The remainder of the parameters are related to the hearing aid. These parameters are discussed

in the accompanying document.

useAid = 0; - This is the only property that is not part of the EssexAid wrapper class. When set to
true, this applies the aid processing at the interface between the acoustic signal and the dummy.
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Member Functions
function obj = cJob(LearnOrRecWavs, jobFolder)
This is the constructor. There are two optional parameters that can be passed on initialisation. The

first is LearnOrRecWavs that can be the character ‘L or ‘R’. This value is used internally by the
object to set the paths to the corpora appropriately, The other value is a path to a folder to use for
file output.

function obj = assignWavPaths(obj, LearnOrRecWavs)
This function tells the object where to find the recorded sound materials.

function obj = lockJobList(obj)
This function places a file mutex in the output folder preventing access from other jobs while the

master job file is updated.

function obj = unlockJobList(obj)
This function safely removes the mutex once file operations have been completed by a node.

function storeSelf(obj)
This function safely overwrites the master job list.

function loadSelf(obj)
This function safely loads the master job list.

function value = get.joblLockTxtFile(obj)
Simple get method to return the full path of the file mutex.

function checkStatus(obj)
This returns the progress of the current job and places some visual feedback related to the progress

in the command window.

function obj = InitMAP(obj)
This adds all of the necessary folders to the working path so that MAP can function.

function obj = assignFiles(obj)
This populates the wavlList array with file names that are going to be processed.

function obj = genFeat(obj, currentWav)
This function generates features for a given wav file according to the rules specified in the object.

function obj = opForHTK(obj, currentWav, featureData)
This function writes the feature vector to disk in a binary format that is readable by the HTK tools.

function [stimulus, sampleRate] = getStimulus(obj, currentWav)
This function generates a stimulus to supply to MAP, performing any resampling, noise addition,

truncation/extension of the signal or noise that is necessary.

function [finalFeatures, ANprobabi lityResponse] = processWavs(obj,
currentWav)
This is the main function within the class that is responsible for the actual feature generation once

all of the housekeeping has been organised.
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Static Methods
These are methods that can be called directly from the class definition and do not require an object
of the class.

function ANsmooth = makeANsmooth(ANresponse, sampleRate, winSize, hopSize)
This function takes any 2-dimensional array of data and temporally smoothes it along the 2"

dimension according to the parameters. IN this class, it is used to smooth the rate representation of
a sound before the DCT is computed.

function ANfeatures = makeANfeatures(ANrate, numCoeff)
This calls the DCT function and truncates the DCT features accordingly.

function f=enframe(x,win, inc)
Buffers a time series into chunks. This is very similar to the buffer function in the signal processing
toolbox.

function b=GJB_dct(a,n)
Discrete cosine transform function for users without the signal processing toolbox.

function w=NRC_hanning(n)
Hanning window function for users without the signal processing toolbox.

function retcode = writeHTK(Ffilename, htkdata, nFrames, sampPeriod,
SampSize, ParamKind, byte_order)

Converts features into a HTK readable format.

function [htkdata,nframes,sampPeriod,sampSize,paramKind] =
readHTK(Filename,byte order)

Converts features from the HTK readable format back to Matlab data. This function is not necessary
in the normal train/test cycle, but is included for completeness.

28| Page



ASR Suite For Dummies

Appendix B: cHMM properties and member functions
This class is internally much simpler than the job class as it is just a wrapper for the HTK binaries.

Publicly Accessible Properties
hmmFolder
This is the name of the folder where the HMM should be saved to disk as it is being trained. It is the

name for the folder where the HMM can be retrieved if it has already been trained.

paramType = "USER_D A"; %DELTAS and ACCELERATIONS
This is a string that describes the type of features in the files to HTK. See the book for more

information.

numCoeff = 27;
This is the number of coefficients at each epoch of the feature. This is the number of DCT

coefficients plus the deltas and accelerations. Therefore, if the first 9 DCT features are used including
both deltas and accelerations, then this value should be set to 27 (3*9).

HERestDataPath = fullfile(pwd, "def", "HERest_digit");
Directory containing instructions for various stages of model re-estimation conducted during the

training process.

configFile = Fullfile(pwd, "def", "config _tr_zcpal2®);
Path to a file containing some HTK flags

trainWordListFile
Path to training word list

testWordListFile
Path to training word list (that does not include the zero or seven in this tutorial)

wordNetFile
Path to the word network file

dictFile = fullfile(pwd, °“def", “"Grammar_digit", "noSevenZeroDict");
Path to the dictionary file
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Member Functions
function obj = cHMM(hmmFolder)
The constructor is very simple. It only has a single input: the path to the hmm folder. The HMM

folder will then be populated with subdirectories during training, that will contain the HMM after
each parameter re-estimation. If the hmm folder already contains a trained HMM, then the object
will recognise this and be able to use this pre-prepared HMM for testing.

function genProto(obj)
Generates a prototype HMM at the beginning of training.

function boolans = istrained(obj)
This function looks in the folder of an HMM that has already been trained all the way to the final

stage of parameter re-estimation. If such a model exists, the function returns true.

function train(obj, trainFeatureFolder)
This is the main function of the class that performs the training. It is responsible for calling all of the

necessary HTK commands to achieve this task.

function test(obj, testFeatureFolder)
This is the testing function that generates MLF files in each of the directories containing testing

features. Scores/confusion matrices/whatever can then be derived from the MLF files.

function value = get.protoFile(obj)
This is a function that selects the appropriate prototype file depending on the state of some other

parameters. This contains many conditions that were once tested and then abandoned.

Static Methods
These are methods that can be called directly from the class definition and do not require an object
of the class.

function createMLF(mapFileFolder)
This method creates an HTK compatible MLF file from the file names within the folder. This MLF file

is used during the training stage, and contains a script of all of the utterances contained in each file.
This is in contrast with the testing phase, where the recogniser generates its own MLF file indicating
what it hypothesises is within each speech feature file.

function createSCP(mapFileFolder)
This function just generates a text document containing a list of the speech files within the given

directory as required by HTK.

function score(testMLFpath)
This function compares the MLF file generated by the recogniser in the testing phase with the actual

digits in the files in order to generate a % correct score.

function scoreWholeFolder(folderToScore, searchString)
This performs the score function for all of the recognition data folders in the experiment. Scores are

given for folders containing the string “searchString”.

function opNum = htk_str2num(ipString)
Utility function that converts text strings into integer strings.
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