rmeddis@38
|
1 function MAP1_14(inputSignal, sampleRate, BFlist, MAPparamsName, ...
|
rmeddis@38
|
2 AN_spikesOrProbability, paramChanges)
|
rmeddis@38
|
3 % To test this function use test_MAP1_14 in this folder
|
rmeddis@38
|
4 %
|
rmeddis@38
|
5 % example:
|
rmeddis@38
|
6 % <navigate to 'MAP1_14\MAP'>
|
rmeddis@38
|
7 % [inputSignal FS] = wavread('../wavFileStore/twister_44kHz');
|
rmeddis@38
|
8 % MAP1_14(inputSignal, FS, -1, 'Normal', 'probability', [])
|
rmeddis@38
|
9 %
|
rmeddis@38
|
10 % All arguments are mandatory.
|
rmeddis@38
|
11 %
|
rmeddis@38
|
12 % BFlist is a vector of BFs but can be '-1' to allow MAPparams to choose
|
rmeddis@38
|
13 % MAPparamsName='Normal'; % source of model parameters
|
rmeddis@38
|
14 % AN_spikesOrProbability='spikes'; % or 'probability'
|
rmeddis@38
|
15 % paramChanges is a cell array of strings that can be used to make last
|
rmeddis@38
|
16 % minute parameter changes, e.g., to simulate OHC loss
|
rmeddis@38
|
17 % e.g. paramChanges{1}= 'DRNLParams.a=0;'; % disable OHCs
|
rmeddis@38
|
18 % e.g. paramchanges={}; % no changes
|
rmeddis@38
|
19 % The model parameters are established in the MAPparams<***> file
|
rmeddis@38
|
20 % and stored as global
|
rmeddis@38
|
21
|
rmeddis@38
|
22 restorePath=path;
|
rmeddis@38
|
23 addpath (['..' filesep 'parameterStore'])
|
rmeddis@38
|
24
|
rmeddis@38
|
25 global OMEParams DRNLParams IHC_cilia_RPParams IHCpreSynapseParams
|
rmeddis@38
|
26 global AN_IHCsynapseParams MacGregorParams MacGregorMultiParams
|
rmeddis@38
|
27
|
rmeddis@38
|
28 % All of the results of this function are stored as global
|
rmeddis@38
|
29 global dt ANdt savedBFlist saveAN_spikesOrProbability saveMAPparamsName...
|
rmeddis@38
|
30 savedInputSignal OMEextEarPressure TMoutput OMEoutput ARattenuation ...
|
rmeddis@38
|
31 DRNLoutput IHC_cilia_output IHCrestingCiliaCond IHCrestingV...
|
rmeddis@38
|
32 IHCoutput ANprobRateOutput ANoutput savePavailable ANtauCas ...
|
rmeddis@38
|
33 CNtauGk CNoutput ICoutput ICmembraneOutput ICfiberTypeRates ...
|
rmeddis@38
|
34 MOCattenuation
|
rmeddis@38
|
35
|
rmeddis@38
|
36 % Normally only ICoutput(logical spike matrix) or ANprobRateOutput will be
|
rmeddis@38
|
37 % needed by the user; so the following will suffice
|
rmeddis@38
|
38 % global ANdt ICoutput ANprobRateOutput
|
rmeddis@38
|
39
|
rmeddis@38
|
40 % Note that sampleRate has not changed from the original function call and
|
rmeddis@38
|
41 % ANprobRateOutput is sampled at this rate
|
rmeddis@38
|
42 % However ANoutput, CNoutput and IC output are stored as logical
|
rmeddis@38
|
43 % 'spike' matrices using a lower sample rate (see ANdt).
|
rmeddis@38
|
44
|
rmeddis@38
|
45 % When AN_spikesOrProbability is set to probability,
|
rmeddis@38
|
46 % no spike matrices are computed.
|
rmeddis@38
|
47 % When AN_spikesOrProbability is set to 'spikes',
|
rmeddis@38
|
48 % no probability output is computed
|
rmeddis@38
|
49
|
rmeddis@38
|
50 % Efferent control variables are ARattenuation and MOCattenuation
|
rmeddis@38
|
51 % These are scalars between 1 (no attenuation) and 0.
|
rmeddis@38
|
52 % They are represented with dt=1/sampleRate (not ANdt)
|
rmeddis@38
|
53 % They are computed using either AN probability rate output
|
rmeddis@38
|
54 % or IC (spikes) output as approrpriate.
|
rmeddis@38
|
55 % AR is computed using across channel activity
|
rmeddis@38
|
56 % MOC is computed on a within-channel basis.
|
rmeddis@38
|
57
|
rmeddis@38
|
58 if nargin<1
|
rmeddis@38
|
59 error(' MAP1_14 is not a script but a function that must be called')
|
rmeddis@38
|
60 end
|
rmeddis@38
|
61
|
rmeddis@38
|
62 if nargin<6
|
rmeddis@38
|
63 paramChanges=[];
|
rmeddis@38
|
64 end
|
rmeddis@38
|
65 % Read parameters from MAPparams<***> file in 'parameterStore' folder
|
rmeddis@38
|
66 % Beware, 'BFlist=-1' is a legitimate argument for MAPparams<>
|
rmeddis@38
|
67 % It means that the calling program allows MAPparams to specify the list
|
rmeddis@38
|
68 cmd=['method=MAPparams' MAPparamsName ...
|
rmeddis@38
|
69 '(BFlist, sampleRate, 0, paramChanges);'];
|
rmeddis@38
|
70 eval(cmd);
|
rmeddis@38
|
71 BFlist=DRNLParams.nonlinCFs;
|
rmeddis@38
|
72
|
rmeddis@38
|
73 % save as global for later plotting if required
|
rmeddis@38
|
74 savedBFlist=BFlist;
|
rmeddis@38
|
75 saveAN_spikesOrProbability=AN_spikesOrProbability;
|
rmeddis@38
|
76 saveMAPparamsName=MAPparamsName;
|
rmeddis@38
|
77
|
rmeddis@38
|
78 dt=1/sampleRate;
|
rmeddis@38
|
79 duration=length(inputSignal)/sampleRate;
|
rmeddis@38
|
80 % segmentDuration is specified in parameter file (must be >efferent delay)
|
rmeddis@38
|
81 segmentDuration=method.segmentDuration;
|
rmeddis@38
|
82 segmentLength=round(segmentDuration/ dt);
|
rmeddis@38
|
83 segmentTime=dt*(1:segmentLength); % used in debugging plots
|
rmeddis@38
|
84
|
rmeddis@38
|
85 % all spiking activity is computed using longer epochs
|
rmeddis@38
|
86 ANspeedUpFactor=AN_IHCsynapseParams.ANspeedUpFactor; % e.g.5 times
|
rmeddis@38
|
87
|
rmeddis@38
|
88 % inputSignal must be row vector
|
rmeddis@38
|
89 [r c]=size(inputSignal);
|
rmeddis@38
|
90 if r>c, inputSignal=inputSignal'; end % transpose
|
rmeddis@38
|
91 % ignore stereo signals
|
rmeddis@38
|
92 inputSignal=inputSignal(1,:); % drop any second channel
|
rmeddis@38
|
93 savedInputSignal=inputSignal;
|
rmeddis@38
|
94
|
rmeddis@38
|
95 % Segment the signal
|
rmeddis@38
|
96 % The sgment length is given but the signal length must be adjusted to be a
|
rmeddis@38
|
97 % multiple of both the segment length and the reduced segmentlength
|
rmeddis@38
|
98 [nSignalRows signalLength]=size(inputSignal);
|
rmeddis@38
|
99 segmentLength=ceil(segmentLength/ANspeedUpFactor)*ANspeedUpFactor;
|
rmeddis@38
|
100 % Make the signal length a whole multiple of the segment length
|
rmeddis@38
|
101 nSignalSegments=ceil(signalLength/segmentLength);
|
rmeddis@38
|
102 padSize=nSignalSegments*segmentLength-signalLength;
|
rmeddis@38
|
103 pad=zeros(nSignalRows,padSize);
|
rmeddis@38
|
104 inputSignal=[inputSignal pad];
|
rmeddis@38
|
105 [ignore signalLength]=size(inputSignal);
|
rmeddis@38
|
106
|
rmeddis@38
|
107 % AN (spikes) is computed at a lower sample rate when spikes required
|
rmeddis@38
|
108 % so it has a reduced segment length (see 'ANspeeUpFactor' above)
|
rmeddis@38
|
109 % AN CN and IC all use this sample interval
|
rmeddis@38
|
110 ANdt=dt*ANspeedUpFactor;
|
rmeddis@38
|
111 reducedSegmentLength=round(segmentLength/ANspeedUpFactor);
|
rmeddis@38
|
112 reducedSignalLength= round(signalLength/ANspeedUpFactor);
|
rmeddis@38
|
113
|
rmeddis@38
|
114 %% Initialise with respect to each stage before computing
|
rmeddis@38
|
115 % by allocating memory,
|
rmeddis@38
|
116 % by computing constants
|
rmeddis@38
|
117 % by establishing easy to read variable names
|
rmeddis@38
|
118 % The computations are made in segments and boundary conditions must
|
rmeddis@38
|
119 % be established and stored. These are found in variables with
|
rmeddis@38
|
120 % 'boundary' or 'bndry' in the name
|
rmeddis@38
|
121
|
rmeddis@38
|
122 %% OME ---
|
rmeddis@38
|
123 % external ear resonances
|
rmeddis@38
|
124 OMEexternalResonanceFilters=OMEParams.externalResonanceFilters;
|
rmeddis@38
|
125 [nOMEExtFilters c]=size(OMEexternalResonanceFilters);
|
rmeddis@38
|
126 % details of external (outer ear) resonances
|
rmeddis@38
|
127 OMEgaindBs=OMEexternalResonanceFilters(:,1);
|
rmeddis@38
|
128 OMEgainScalars=10.^(OMEgaindBs/20);
|
rmeddis@38
|
129 OMEfilterOrder=OMEexternalResonanceFilters(:,2);
|
rmeddis@38
|
130 OMElowerCutOff=OMEexternalResonanceFilters(:,3);
|
rmeddis@38
|
131 OMEupperCutOff=OMEexternalResonanceFilters(:,4);
|
rmeddis@38
|
132 % external resonance coefficients
|
rmeddis@38
|
133 ExtFilter_b=cell(nOMEExtFilters,1);
|
rmeddis@38
|
134 ExtFilter_a=cell(nOMEExtFilters,1);
|
rmeddis@38
|
135 for idx=1:nOMEExtFilters
|
rmeddis@38
|
136 Nyquist=sampleRate/2;
|
rmeddis@38
|
137 [b, a] = butter(OMEfilterOrder(idx), ...
|
rmeddis@38
|
138 [OMElowerCutOff(idx) OMEupperCutOff(idx)]...
|
rmeddis@38
|
139 /Nyquist);
|
rmeddis@38
|
140 ExtFilter_b{idx}=b;
|
rmeddis@38
|
141 ExtFilter_a{idx}=a;
|
rmeddis@38
|
142 end
|
rmeddis@38
|
143 OMEExtFilterBndry=cell(2,1);
|
rmeddis@38
|
144 OMEextEarPressure=zeros(1,signalLength); % pressure at tympanic membrane
|
rmeddis@38
|
145
|
rmeddis@38
|
146 % pressure to velocity conversion using smoothing filter (50 Hz cutoff)
|
rmeddis@38
|
147 tau=1/(2*pi*50);
|
rmeddis@38
|
148 a1=dt/tau-1; a0=1;
|
rmeddis@38
|
149 b0=1+ a1;
|
rmeddis@38
|
150 TMdisp_b=b0; TMdisp_a=[a0 a1];
|
rmeddis@38
|
151 % figure(9), freqz(TMdisp_b, TMdisp_a)
|
rmeddis@38
|
152 OME_TMdisplacementBndry=[];
|
rmeddis@38
|
153
|
rmeddis@38
|
154 % OME high pass (simulates poor low frequency stapes response)
|
rmeddis@38
|
155 OMEhighPassHighCutOff=OMEParams.OMEstapesLPcutoff;
|
rmeddis@38
|
156 Nyquist=sampleRate/2;
|
rmeddis@38
|
157 [stapesDisp_b,stapesDisp_a] = butter(1, OMEhighPassHighCutOff/Nyquist, 'high');
|
rmeddis@38
|
158 % figure(10), freqz(stapesDisp_b, stapesDisp_a)
|
rmeddis@38
|
159
|
rmeddis@38
|
160 OMEhighPassBndry=[];
|
rmeddis@38
|
161
|
rmeddis@38
|
162 % OMEampStapes might be reducdant (use OMEParams.stapesScalar)
|
rmeddis@38
|
163 stapesScalar= OMEParams.stapesScalar;
|
rmeddis@38
|
164
|
rmeddis@38
|
165 % Acoustic reflex
|
rmeddis@38
|
166 efferentDelayPts=round(OMEParams.ARdelay/dt);
|
rmeddis@38
|
167 % smoothing filter
|
rmeddis@38
|
168 a1=dt/OMEParams.ARtau-1; a0=1;
|
rmeddis@38
|
169 b0=1+ a1;
|
rmeddis@38
|
170 ARfilt_b=b0; ARfilt_a=[a0 a1];
|
rmeddis@38
|
171
|
rmeddis@38
|
172 ARattenuation=ones(1,signalLength);
|
rmeddis@38
|
173 ARrateThreshold=OMEParams.ARrateThreshold; % may not be used
|
rmeddis@38
|
174 ARrateToAttenuationFactor=OMEParams.rateToAttenuationFactor;
|
rmeddis@38
|
175 ARrateToAttenuationFactorProb=OMEParams.rateToAttenuationFactorProb;
|
rmeddis@38
|
176 ARboundary=[];
|
rmeddis@38
|
177 ARboundaryProb=0;
|
rmeddis@38
|
178
|
rmeddis@38
|
179 % save complete OME record (stapes displacement)
|
rmeddis@38
|
180 OMEoutput=zeros(1,signalLength);
|
rmeddis@38
|
181 TMoutput=zeros(1,signalLength);
|
rmeddis@38
|
182
|
rmeddis@38
|
183 %% BM ---
|
rmeddis@38
|
184 % BM is represented as a list of locations identified by BF
|
rmeddis@38
|
185 DRNL_BFs=BFlist;
|
rmeddis@38
|
186 nBFs= length(DRNL_BFs);
|
rmeddis@38
|
187
|
rmeddis@38
|
188 % DRNLchannelParameters=DRNLParams.channelParameters;
|
rmeddis@38
|
189 DRNLresponse= zeros(nBFs, segmentLength);
|
rmeddis@38
|
190
|
rmeddis@38
|
191 MOCrateToAttenuationFactor=DRNLParams.rateToAttenuationFactor;
|
rmeddis@38
|
192 rateToAttenuationFactorProb=DRNLParams.rateToAttenuationFactorProb;
|
rmeddis@38
|
193 MOCrateThresholdProb=DRNLParams.MOCrateThresholdProb;
|
rmeddis@38
|
194
|
rmeddis@38
|
195 % smoothing filter for MOC
|
rmeddis@38
|
196 a1=dt/DRNLParams.MOCtau-1; a0=1;
|
rmeddis@38
|
197 b0=1+ a1;
|
rmeddis@38
|
198 MOCfilt_b=b0; MOCfilt_a=[a0 a1];
|
rmeddis@38
|
199 % figure(9), freqz(stapesDisp_b, stapesDisp_a)
|
rmeddis@38
|
200 MOCboundary=cell(nBFs,1);
|
rmeddis@38
|
201 MOCprobBoundary=cell(nBFs,1);
|
rmeddis@38
|
202
|
rmeddis@38
|
203 MOCattSegment=zeros(nBFs,reducedSegmentLength);
|
rmeddis@38
|
204 MOCattenuation=ones(nBFs,signalLength);
|
rmeddis@38
|
205
|
rmeddis@38
|
206 % if DRNLParams.a>0
|
rmeddis@38
|
207 % DRNLcompressionThreshold=10^((1/(1-DRNLParams.c))* ...
|
rmeddis@38
|
208 % log10(DRNLParams.b/DRNLParams.a));
|
rmeddis@38
|
209 % else
|
rmeddis@38
|
210 % DRNLcompressionThreshold=inf;
|
rmeddis@38
|
211 % end
|
rmeddis@38
|
212 DRNLcompressionThreshold=DRNLParams.cTh;
|
rmeddis@38
|
213 DRNLlinearOrder= DRNLParams.linOrder;
|
rmeddis@38
|
214 DRNLnonlinearOrder= DRNLParams.nonlinOrder;
|
rmeddis@38
|
215
|
rmeddis@38
|
216 DRNLa=DRNLParams.a;
|
rmeddis@38
|
217 DRNLb=DRNLParams.b;
|
rmeddis@38
|
218 DRNLc=DRNLParams.c;
|
rmeddis@38
|
219 linGAIN=DRNLParams.g;
|
rmeddis@38
|
220 %
|
rmeddis@38
|
221 % gammatone filter coefficients for linear pathway
|
rmeddis@38
|
222 bw=DRNLParams.linBWs';
|
rmeddis@38
|
223 phi = 2 * pi * bw * dt;
|
rmeddis@38
|
224 cf=DRNLParams.linCFs';
|
rmeddis@38
|
225 theta = 2 * pi * cf * dt;
|
rmeddis@38
|
226 cos_theta = cos(theta);
|
rmeddis@38
|
227 sin_theta = sin(theta);
|
rmeddis@38
|
228 alpha = -exp(-phi).* cos_theta;
|
rmeddis@38
|
229 b0 = ones(nBFs,1);
|
rmeddis@38
|
230 b1 = 2 * alpha;
|
rmeddis@38
|
231 b2 = exp(-2 * phi);
|
rmeddis@38
|
232 z1 = (1 + alpha .* cos_theta) - (alpha .* sin_theta) * i;
|
rmeddis@38
|
233 z2 = (1 + b1 .* cos_theta) - (b1 .* sin_theta) * i;
|
rmeddis@38
|
234 z3 = (b2 .* cos(2 * theta)) - (b2 .* sin(2 * theta)) * i;
|
rmeddis@38
|
235 tf = (z2 + z3) ./ z1;
|
rmeddis@38
|
236 a0 = abs(tf);
|
rmeddis@38
|
237 a1 = alpha .* a0;
|
rmeddis@38
|
238 GTlin_a = [b0, b1, b2];
|
rmeddis@38
|
239 GTlin_b = [a0, a1];
|
rmeddis@38
|
240 GTlinOrder=DRNLlinearOrder;
|
rmeddis@38
|
241 GTlinBdry=cell(nBFs,GTlinOrder);
|
rmeddis@38
|
242
|
rmeddis@38
|
243 % nonlinear gammatone filter coefficients
|
rmeddis@38
|
244 bw=DRNLParams.nlBWs';
|
rmeddis@38
|
245 phi = 2 * pi * bw * dt;
|
rmeddis@38
|
246 cf=DRNLParams.nonlinCFs';
|
rmeddis@38
|
247 theta = 2 * pi * cf * dt;
|
rmeddis@38
|
248 cos_theta = cos(theta);
|
rmeddis@38
|
249 sin_theta = sin(theta);
|
rmeddis@38
|
250 alpha = -exp(-phi).* cos_theta;
|
rmeddis@38
|
251 b0 = ones(nBFs,1);
|
rmeddis@38
|
252 b1 = 2 * alpha;
|
rmeddis@38
|
253 b2 = exp(-2 * phi);
|
rmeddis@38
|
254 z1 = (1 + alpha .* cos_theta) - (alpha .* sin_theta) * i;
|
rmeddis@38
|
255 z2 = (1 + b1 .* cos_theta) - (b1 .* sin_theta) * i;
|
rmeddis@38
|
256 z3 = (b2 .* cos(2 * theta)) - (b2 .* sin(2 * theta)) * i;
|
rmeddis@38
|
257 tf = (z2 + z3) ./ z1;
|
rmeddis@38
|
258 a0 = abs(tf);
|
rmeddis@38
|
259 a1 = alpha .* a0;
|
rmeddis@38
|
260 GTnonlin_a = [b0, b1, b2];
|
rmeddis@38
|
261 GTnonlin_b = [a0, a1];
|
rmeddis@38
|
262 GTnonlinOrder=DRNLnonlinearOrder;
|
rmeddis@38
|
263 GTnonlinBdry1=cell(nBFs, GTnonlinOrder);
|
rmeddis@38
|
264 GTnonlinBdry2=cell(nBFs, GTnonlinOrder);
|
rmeddis@38
|
265
|
rmeddis@38
|
266 % complete BM record (BM displacement)
|
rmeddis@38
|
267 DRNLoutput=zeros(nBFs, signalLength);
|
rmeddis@38
|
268
|
rmeddis@38
|
269
|
rmeddis@38
|
270 %% IHC ---
|
rmeddis@38
|
271 % IHC cilia activity and receptor potential
|
rmeddis@38
|
272 % viscous coupling between BM and stereocilia displacement
|
rmeddis@38
|
273 % Nyquist=sampleRate/2;
|
rmeddis@38
|
274 % IHCcutoff=1/(2*pi*IHC_cilia_RPParams.tc);
|
rmeddis@38
|
275 % [IHCciliaFilter_b,IHCciliaFilter_a]=...
|
rmeddis@38
|
276 % butter(1, IHCcutoff/Nyquist, 'high');
|
rmeddis@38
|
277 a1=dt/IHC_cilia_RPParams.tc-1; a0=1;
|
rmeddis@38
|
278 b0=1+ a1;
|
rmeddis@38
|
279 % high pass (i.e. low pass reversed)
|
rmeddis@38
|
280 IHCciliaFilter_b=[a0 a1]; IHCciliaFilter_a=b0;
|
rmeddis@38
|
281 % figure(9), freqz(IHCciliaFilter_b, IHCciliaFilter_a)
|
rmeddis@38
|
282
|
rmeddis@38
|
283 IHCciliaBndry=cell(nBFs,1);
|
rmeddis@38
|
284
|
rmeddis@38
|
285 % IHC apical conductance (Boltzman function)
|
rmeddis@38
|
286 IHC_C= IHC_cilia_RPParams.C;
|
rmeddis@38
|
287 IHCu0= IHC_cilia_RPParams.u0;
|
rmeddis@38
|
288 IHCu1= IHC_cilia_RPParams.u1;
|
rmeddis@38
|
289 IHCs0= IHC_cilia_RPParams.s0;
|
rmeddis@38
|
290 IHCs1= IHC_cilia_RPParams.s1;
|
rmeddis@38
|
291 IHCGmax= IHC_cilia_RPParams.Gmax;
|
rmeddis@38
|
292 IHCGa= IHC_cilia_RPParams.Ga; % (leakage)
|
rmeddis@38
|
293
|
rmeddis@38
|
294 IHCGu0 = IHCGa+IHCGmax./(1+exp(IHCu0/IHCs0).*(1+exp(IHCu1/IHCs1)));
|
rmeddis@38
|
295 IHCrestingCiliaCond=IHCGu0;
|
rmeddis@38
|
296
|
rmeddis@38
|
297 % Receptor potential
|
rmeddis@38
|
298 IHC_Cab= IHC_cilia_RPParams.Cab;
|
rmeddis@38
|
299 IHC_Gk= IHC_cilia_RPParams.Gk;
|
rmeddis@38
|
300 IHC_Et= IHC_cilia_RPParams.Et;
|
rmeddis@38
|
301 IHC_Ek= IHC_cilia_RPParams.Ek;
|
rmeddis@38
|
302 IHC_Ekp= IHC_Ek+IHC_Et*IHC_cilia_RPParams.Rpc;
|
rmeddis@38
|
303
|
rmeddis@38
|
304 IHCrestingV= (IHC_Gk*IHC_Ekp+IHCGu0*IHC_Et)/(IHCGu0+IHC_Gk);
|
rmeddis@38
|
305
|
rmeddis@38
|
306 IHC_Vnow= IHCrestingV*ones(nBFs,1); % initial voltage
|
rmeddis@38
|
307 IHC_RP= zeros(nBFs,segmentLength);
|
rmeddis@38
|
308
|
rmeddis@38
|
309 % complete record of IHC receptor potential (V)
|
rmeddis@38
|
310 IHCciliaDisplacement= zeros(nBFs,segmentLength);
|
rmeddis@38
|
311 IHCoutput= zeros(nBFs,signalLength);
|
rmeddis@38
|
312 IHC_cilia_output= zeros(nBFs,signalLength);
|
rmeddis@38
|
313
|
rmeddis@38
|
314
|
rmeddis@38
|
315 %% pre-synapse ---
|
rmeddis@38
|
316 % Each BF is replicated using a different fiber type to make a 'channel'
|
rmeddis@38
|
317 % The number of channels is nBFs x nANfiberTypes
|
rmeddis@38
|
318 % Fiber types are specified in terms of tauCa
|
rmeddis@38
|
319 nANfiberTypes= length(IHCpreSynapseParams.tauCa);
|
rmeddis@38
|
320 ANtauCas= IHCpreSynapseParams.tauCa;
|
rmeddis@38
|
321 nANchannels= nANfiberTypes*nBFs;
|
rmeddis@38
|
322 synapticCa= zeros(nANchannels,segmentLength);
|
rmeddis@38
|
323
|
rmeddis@38
|
324 % Calcium control (more calcium, greater release rate)
|
rmeddis@38
|
325 ECa=IHCpreSynapseParams.ECa;
|
rmeddis@38
|
326 gamma=IHCpreSynapseParams.gamma;
|
rmeddis@38
|
327 beta=IHCpreSynapseParams.beta;
|
rmeddis@38
|
328 tauM=IHCpreSynapseParams.tauM;
|
rmeddis@38
|
329 mICa=zeros(nANchannels,segmentLength);
|
rmeddis@38
|
330 GmaxCa=IHCpreSynapseParams.GmaxCa;
|
rmeddis@38
|
331 synapse_z= IHCpreSynapseParams.z;
|
rmeddis@38
|
332 synapse_power=IHCpreSynapseParams.power;
|
rmeddis@38
|
333
|
rmeddis@38
|
334 % tauCa vector is established across channels to allow vectorization
|
rmeddis@38
|
335 % (one tauCa per channel). Do not confuse with ANtauCas (one pre fiber type)
|
rmeddis@38
|
336 tauCa=repmat(ANtauCas, nBFs,1);
|
rmeddis@38
|
337 tauCa=reshape(tauCa, nANchannels, 1);
|
rmeddis@38
|
338
|
rmeddis@38
|
339 % presynapse startup values (vectors, length:nANchannels)
|
rmeddis@38
|
340 % proportion (0 - 1) of Ca channels open at IHCrestingV
|
rmeddis@38
|
341 mICaCurrent=((1+beta^-1 * exp(-gamma*IHCrestingV))^-1)...
|
rmeddis@38
|
342 *ones(nBFs*nANfiberTypes,1);
|
rmeddis@38
|
343 % corresponding startup currents
|
rmeddis@38
|
344 ICaCurrent= (GmaxCa*mICaCurrent.^3) * (IHCrestingV-ECa);
|
rmeddis@38
|
345 CaCurrent= ICaCurrent.*tauCa;
|
rmeddis@38
|
346
|
rmeddis@38
|
347 % vesicle release rate at startup (one per channel)
|
rmeddis@38
|
348 % kt0 is used only at initialisation
|
rmeddis@38
|
349 kt0= -synapse_z * CaCurrent.^synapse_power;
|
rmeddis@38
|
350
|
rmeddis@38
|
351
|
rmeddis@38
|
352 %% AN ---
|
rmeddis@38
|
353 % each row of the AN matrices represents one AN fiber
|
rmeddis@38
|
354 % The results computed either for probabiities *or* for spikes (not both)
|
rmeddis@38
|
355 % Spikes are necessary if CN and IC are to be computed
|
rmeddis@38
|
356 nFibersPerChannel= AN_IHCsynapseParams.numFibers;
|
rmeddis@38
|
357 nANfibers= nANchannels*nFibersPerChannel;
|
rmeddis@38
|
358 AN_refractory_period= AN_IHCsynapseParams.refractory_period;
|
rmeddis@38
|
359
|
rmeddis@38
|
360 y=AN_IHCsynapseParams.y;
|
rmeddis@38
|
361 l=AN_IHCsynapseParams.l;
|
rmeddis@38
|
362 x=AN_IHCsynapseParams.x;
|
rmeddis@38
|
363 r=AN_IHCsynapseParams.r;
|
rmeddis@38
|
364 M=round(AN_IHCsynapseParams.M);
|
rmeddis@38
|
365
|
rmeddis@38
|
366 % probability (NB initial 'P' on everything)
|
rmeddis@38
|
367 PAN_ydt = repmat(AN_IHCsynapseParams.y*dt, nANchannels,1);
|
rmeddis@38
|
368 PAN_ldt = repmat(AN_IHCsynapseParams.l*dt, nANchannels,1);
|
rmeddis@38
|
369 PAN_xdt = repmat(AN_IHCsynapseParams.x*dt, nANchannels,1);
|
rmeddis@38
|
370 PAN_rdt = repmat(AN_IHCsynapseParams.r*dt, nANchannels,1);
|
rmeddis@38
|
371 PAN_rdt_plus_ldt = PAN_rdt + PAN_ldt;
|
rmeddis@38
|
372 PAN_M=round(AN_IHCsynapseParams.M);
|
rmeddis@38
|
373
|
rmeddis@38
|
374 % compute starting values
|
rmeddis@38
|
375 Pcleft = kt0* y* M ./ (y*(l+r)+ kt0* l);
|
rmeddis@38
|
376 Pavailable = Pcleft*(l+r)./kt0;
|
rmeddis@38
|
377 Preprocess = Pcleft*r/x; % canbe fractional
|
rmeddis@38
|
378
|
rmeddis@38
|
379 ANprobability=zeros(nANchannels,segmentLength);
|
rmeddis@38
|
380 ANprobRateOutput=zeros(nANchannels,signalLength);
|
rmeddis@38
|
381 lengthAbsRefractoryP= round(AN_refractory_period/dt);
|
rmeddis@38
|
382 cumANnotFireProb=ones(nANchannels,signalLength);
|
rmeddis@38
|
383 % special variables for monitoring synaptic cleft (specialists only)
|
rmeddis@38
|
384 savePavailableSeg=zeros(nANchannels,segmentLength);
|
rmeddis@38
|
385 savePavailable=zeros(nANchannels,signalLength);
|
rmeddis@38
|
386
|
rmeddis@38
|
387 % spikes % ! ! ! ! ! ! ! !
|
rmeddis@38
|
388 lengthAbsRefractory= round(AN_refractory_period/ANdt);
|
rmeddis@38
|
389
|
rmeddis@38
|
390 AN_ydt= repmat(AN_IHCsynapseParams.y*ANdt, nANfibers,1);
|
rmeddis@38
|
391 AN_ldt= repmat(AN_IHCsynapseParams.l*ANdt, nANfibers,1);
|
rmeddis@38
|
392 AN_xdt= repmat(AN_IHCsynapseParams.x*ANdt, nANfibers,1);
|
rmeddis@38
|
393 AN_rdt= repmat(AN_IHCsynapseParams.r*ANdt, nANfibers,1);
|
rmeddis@38
|
394 AN_rdt_plus_ldt= AN_rdt + AN_ldt;
|
rmeddis@38
|
395 AN_M= round(AN_IHCsynapseParams.M);
|
rmeddis@38
|
396
|
rmeddis@38
|
397 % kt0 is initial release rate
|
rmeddis@38
|
398 % Establish as a vector (length=channel x number of fibers)
|
rmeddis@38
|
399 kt0= repmat(kt0', nFibersPerChannel, 1);
|
rmeddis@38
|
400 kt0=reshape(kt0, nANfibers,1);
|
rmeddis@38
|
401
|
rmeddis@38
|
402 % starting values for reservoirs
|
rmeddis@38
|
403 AN_cleft = kt0* y* M ./ (y*(l+r)+ kt0* l);
|
rmeddis@38
|
404 AN_available = round(AN_cleft*(l+r)./kt0); %must be integer
|
rmeddis@38
|
405 AN_reprocess = AN_cleft*r/x;
|
rmeddis@38
|
406
|
rmeddis@38
|
407 % output is in a logical array spikes = 1/ 0.
|
rmeddis@38
|
408 ANspikes= false(nANfibers,reducedSegmentLength);
|
rmeddis@38
|
409 ANoutput= false(nANfibers,reducedSignalLength);
|
rmeddis@38
|
410
|
rmeddis@38
|
411
|
rmeddis@38
|
412 %% CN (first brain stem nucleus - could be any subdivision of CN)
|
rmeddis@38
|
413 % Input to a CN neuorn is a random selection of AN fibers within a channel
|
rmeddis@38
|
414 % The number of AN fibers used is ANfibersFanInToCN
|
rmeddis@38
|
415 % CNtauGk (Potassium time constant) determines the rate of firing of
|
rmeddis@38
|
416 % the unit when driven hard by a DC input (not normally >350 sp/s)
|
rmeddis@38
|
417 % If there is more than one value, everything is replicated accordingly
|
rmeddis@38
|
418
|
rmeddis@38
|
419 ANavailableFibersPerChan=AN_IHCsynapseParams.numFibers;
|
rmeddis@38
|
420 ANfibersFanInToCN=MacGregorMultiParams.fibersPerNeuron;
|
rmeddis@38
|
421
|
rmeddis@38
|
422 CNtauGk=MacGregorMultiParams.tauGk; % row vector of CN types (by tauGk)
|
rmeddis@38
|
423 nCNtauGk=length(CNtauGk);
|
rmeddis@38
|
424
|
rmeddis@38
|
425 % the total number of 'channels' is now greater
|
rmeddis@38
|
426 % 'channel' is defined as collections of units with the same parameters
|
rmeddis@38
|
427 % i.e. same BF, same ANtau, same CNtauGk
|
rmeddis@38
|
428 nCNchannels=nANchannels*nCNtauGk;
|
rmeddis@38
|
429
|
rmeddis@38
|
430 nCNneuronsPerChannel=MacGregorMultiParams.nNeuronsPerBF;
|
rmeddis@38
|
431 tauGk=repmat(CNtauGk, nCNneuronsPerChannel,1);
|
rmeddis@38
|
432 tauGk=reshape(tauGk,nCNneuronsPerChannel*nCNtauGk,1);
|
rmeddis@38
|
433
|
rmeddis@38
|
434 % Now the number of neurons has been increased
|
rmeddis@38
|
435 nCNneurons=nCNneuronsPerChannel*nCNchannels;
|
rmeddis@38
|
436 CNmembranePotential=zeros(nCNneurons,reducedSegmentLength);
|
rmeddis@38
|
437
|
rmeddis@38
|
438 % establish which ANfibers (by name) feed into which CN nuerons
|
rmeddis@38
|
439 CNinputfiberLists=zeros(nANchannels*nCNneuronsPerChannel, ANfibersFanInToCN);
|
rmeddis@38
|
440 unitNo=1;
|
rmeddis@38
|
441 for ch=1:nANchannels
|
rmeddis@38
|
442 % Each channel contains a number of units =length(listOfFanInValues)
|
rmeddis@38
|
443 for idx=1:nCNneuronsPerChannel
|
rmeddis@38
|
444 for idx2=1:nCNtauGk
|
rmeddis@38
|
445 fibersUsed=(ch-1)*ANavailableFibersPerChan + ...
|
rmeddis@38
|
446 ceil(rand(1,ANfibersFanInToCN)* ANavailableFibersPerChan);
|
rmeddis@38
|
447 CNinputfiberLists(unitNo,:)=fibersUsed;
|
rmeddis@38
|
448 unitNo=unitNo+1;
|
rmeddis@38
|
449 end
|
rmeddis@38
|
450 end
|
rmeddis@38
|
451 end
|
rmeddis@38
|
452
|
rmeddis@38
|
453 % input to CN units
|
rmeddis@38
|
454 AN_PSTH=zeros(nCNneurons,reducedSegmentLength);
|
rmeddis@38
|
455
|
rmeddis@38
|
456 % Generate CNalphaFunction function
|
rmeddis@38
|
457 % by which spikes are converted to post-synaptic currents
|
rmeddis@38
|
458 CNdendriteLPfreq= MacGregorMultiParams.dendriteLPfreq;
|
rmeddis@38
|
459 CNcurrentPerSpike=MacGregorMultiParams.currentPerSpike;
|
rmeddis@38
|
460 CNspikeToCurrentTau=1/(2*pi*CNdendriteLPfreq);
|
rmeddis@38
|
461 t=ANdt:ANdt:5*CNspikeToCurrentTau;
|
rmeddis@38
|
462 CNalphaFunction= (1 / ...
|
rmeddis@38
|
463 CNspikeToCurrentTau)*t.*exp(-t /CNspikeToCurrentTau);
|
rmeddis@38
|
464 CNalphaFunction=CNalphaFunction*CNcurrentPerSpike;
|
rmeddis@38
|
465
|
rmeddis@38
|
466 % figure(98), plot(t,CNalphaFunction)
|
rmeddis@38
|
467 % working memory for implementing convolution
|
rmeddis@38
|
468
|
rmeddis@38
|
469 CNcurrentTemp=...
|
rmeddis@38
|
470 zeros(nCNneurons,reducedSegmentLength+length(CNalphaFunction)-1);
|
rmeddis@38
|
471 % trailing alphas are parts of humps carried forward to the next segment
|
rmeddis@38
|
472 CNtrailingAlphas=zeros(nCNneurons,length(CNalphaFunction));
|
rmeddis@38
|
473
|
rmeddis@38
|
474 CN_tauM=MacGregorMultiParams.tauM;
|
rmeddis@38
|
475 CN_tauTh=MacGregorMultiParams.tauTh;
|
rmeddis@38
|
476 CN_cap=MacGregorMultiParams.Cap;
|
rmeddis@38
|
477 CN_c=MacGregorMultiParams.c;
|
rmeddis@38
|
478 CN_b=MacGregorMultiParams.dGkSpike;
|
rmeddis@38
|
479 CN_Ek=MacGregorMultiParams.Ek;
|
rmeddis@38
|
480 CN_Eb= MacGregorMultiParams.Eb;
|
rmeddis@38
|
481 CN_Er=MacGregorMultiParams.Er;
|
rmeddis@38
|
482 CN_Th0= MacGregorMultiParams.Th0;
|
rmeddis@38
|
483 CN_E= zeros(nCNneurons,1);
|
rmeddis@38
|
484 CN_Gk= zeros(nCNneurons,1);
|
rmeddis@38
|
485 CN_Th= MacGregorMultiParams.Th0*ones(nCNneurons,1);
|
rmeddis@38
|
486 CN_Eb=CN_Eb.*ones(nCNneurons,1);
|
rmeddis@38
|
487 CN_Er=CN_Er.*ones(nCNneurons,1);
|
rmeddis@38
|
488 CNtimeSinceLastSpike=zeros(nCNneurons,1);
|
rmeddis@38
|
489 % tauGk is the main distinction between neurons
|
rmeddis@38
|
490 % in fact they are all the same in the standard model
|
rmeddis@38
|
491 tauGk=repmat(tauGk,nANchannels,1);
|
rmeddis@38
|
492
|
rmeddis@38
|
493 CNoutput=false(nCNneurons,reducedSignalLength);
|
rmeddis@38
|
494
|
rmeddis@38
|
495
|
rmeddis@38
|
496 %% MacGregor (IC - second nucleus) --------
|
rmeddis@38
|
497 nICcells=nANchannels*nCNtauGk; % one cell per channel
|
rmeddis@38
|
498 CN_PSTH=zeros(nICcells ,reducedSegmentLength);
|
rmeddis@38
|
499
|
rmeddis@38
|
500 % ICspikeWidth=0.00015; % this may need revisiting
|
rmeddis@38
|
501 % epochsPerSpike=round(ICspikeWidth/ANdt);
|
rmeddis@38
|
502 % if epochsPerSpike<1
|
rmeddis@38
|
503 % error(['MacGregorMulti: sample rate too low to support ' ...
|
rmeddis@38
|
504 % num2str(ICspikeWidth*1e6) ' microsec spikes']);
|
rmeddis@38
|
505 % end
|
rmeddis@38
|
506
|
rmeddis@38
|
507 % short names
|
rmeddis@38
|
508 IC_tauM=MacGregorParams.tauM;
|
rmeddis@38
|
509 IC_tauGk=MacGregorParams.tauGk;
|
rmeddis@38
|
510 IC_tauTh=MacGregorParams.tauTh;
|
rmeddis@38
|
511 IC_cap=MacGregorParams.Cap;
|
rmeddis@38
|
512 IC_c=MacGregorParams.c;
|
rmeddis@38
|
513 IC_b=MacGregorParams.dGkSpike;
|
rmeddis@38
|
514 IC_Th0=MacGregorParams.Th0;
|
rmeddis@38
|
515 IC_Ek=MacGregorParams.Ek;
|
rmeddis@38
|
516 IC_Eb= MacGregorParams.Eb;
|
rmeddis@38
|
517 IC_Er=MacGregorParams.Er;
|
rmeddis@38
|
518
|
rmeddis@38
|
519 IC_E=zeros(nICcells,1);
|
rmeddis@38
|
520 IC_Gk=zeros(nICcells,1);
|
rmeddis@38
|
521 IC_Th=IC_Th0*ones(nICcells,1);
|
rmeddis@38
|
522
|
rmeddis@38
|
523 % Dendritic filtering, all spikes are replaced by CNalphaFunction functions
|
rmeddis@38
|
524 ICdendriteLPfreq= MacGregorParams.dendriteLPfreq;
|
rmeddis@38
|
525 ICcurrentPerSpike=MacGregorParams.currentPerSpike;
|
rmeddis@38
|
526 ICspikeToCurrentTau=1/(2*pi*ICdendriteLPfreq);
|
rmeddis@38
|
527 t=ANdt:ANdt:3*ICspikeToCurrentTau;
|
rmeddis@38
|
528 IC_CNalphaFunction= (ICcurrentPerSpike / ...
|
rmeddis@38
|
529 ICspikeToCurrentTau)*t.*exp(-t / ICspikeToCurrentTau);
|
rmeddis@38
|
530 % figure(98), plot(t,IC_CNalphaFunction)
|
rmeddis@38
|
531
|
rmeddis@38
|
532 % working space for implementing alpha function
|
rmeddis@38
|
533 ICcurrentTemp=...
|
rmeddis@38
|
534 zeros(nICcells,reducedSegmentLength+length(IC_CNalphaFunction)-1);
|
rmeddis@38
|
535 ICtrailingAlphas=zeros(nICcells, length(IC_CNalphaFunction));
|
rmeddis@38
|
536
|
rmeddis@38
|
537 ICfiberTypeRates=zeros(nANfiberTypes,reducedSignalLength);
|
rmeddis@38
|
538 ICoutput=false(nICcells,reducedSignalLength);
|
rmeddis@38
|
539
|
rmeddis@38
|
540 ICmembranePotential=zeros(nICcells,reducedSegmentLength);
|
rmeddis@38
|
541 ICmembraneOutput=zeros(nICcells,signalLength);
|
rmeddis@38
|
542
|
rmeddis@38
|
543
|
rmeddis@38
|
544 %% Main program %% %% %% %% %% %% %% %% %% %% %% %% %% %%
|
rmeddis@38
|
545
|
rmeddis@38
|
546 % Compute the entire model for each segment
|
rmeddis@38
|
547 segmentStartPTR=1;
|
rmeddis@38
|
548 reducedSegmentPTR=1; % when sampling rate is reduced
|
rmeddis@38
|
549 while segmentStartPTR<signalLength
|
rmeddis@38
|
550 segmentEndPTR=segmentStartPTR+segmentLength-1;
|
rmeddis@38
|
551 % shorter segments after speed up.
|
rmeddis@38
|
552 shorterSegmentEndPTR=reducedSegmentPTR+reducedSegmentLength-1;
|
rmeddis@38
|
553
|
rmeddis@38
|
554 inputPressureSegment=inputSignal...
|
rmeddis@38
|
555 (:,segmentStartPTR:segmentStartPTR+segmentLength-1);
|
rmeddis@38
|
556
|
rmeddis@38
|
557 % segment debugging plots
|
rmeddis@38
|
558 % figure(98)
|
rmeddis@38
|
559 % plot(segmentTime,inputPressureSegment), title('signalSegment')
|
rmeddis@38
|
560
|
rmeddis@38
|
561
|
rmeddis@38
|
562 % OME ----------------------
|
rmeddis@38
|
563
|
rmeddis@38
|
564 % OME Stage 1: external resonances. Add to inputSignal pressure wave
|
rmeddis@38
|
565 y=inputPressureSegment;
|
rmeddis@38
|
566 for n=1:nOMEExtFilters
|
rmeddis@38
|
567 % any number of resonances can be used
|
rmeddis@38
|
568 [x OMEExtFilterBndry{n}] = ...
|
rmeddis@38
|
569 filter(ExtFilter_b{n},ExtFilter_a{n},...
|
rmeddis@38
|
570 inputPressureSegment, OMEExtFilterBndry{n});
|
rmeddis@38
|
571 x= x* OMEgainScalars(n);
|
rmeddis@38
|
572 % This is a parallel resonance so add it
|
rmeddis@38
|
573 y=y+x;
|
rmeddis@38
|
574 end
|
rmeddis@38
|
575 inputPressureSegment=y;
|
rmeddis@38
|
576 OMEextEarPressure(segmentStartPTR:segmentEndPTR)= inputPressureSegment;
|
rmeddis@38
|
577
|
rmeddis@38
|
578 % OME stage 2: convert input pressure (velocity) to
|
rmeddis@38
|
579 % tympanic membrane(TM) displacement using low pass filter
|
rmeddis@38
|
580 [TMdisplacementSegment OME_TMdisplacementBndry] = ...
|
rmeddis@38
|
581 filter(TMdisp_b,TMdisp_a,inputPressureSegment, ...
|
rmeddis@38
|
582 OME_TMdisplacementBndry);
|
rmeddis@38
|
583 % and save it
|
rmeddis@38
|
584 TMoutput(segmentStartPTR:segmentEndPTR)= TMdisplacementSegment;
|
rmeddis@38
|
585
|
rmeddis@38
|
586 % OME stage 3: middle ear high pass effect to simulate stapes inertia
|
rmeddis@38
|
587 [stapesDisplacement OMEhighPassBndry] = ...
|
rmeddis@38
|
588 filter(stapesDisp_b,stapesDisp_a,TMdisplacementSegment, ...
|
rmeddis@38
|
589 OMEhighPassBndry);
|
rmeddis@38
|
590
|
rmeddis@38
|
591 % OME stage 4: apply stapes scalar
|
rmeddis@38
|
592 stapesDisplacement=stapesDisplacement*stapesScalar;
|
rmeddis@38
|
593
|
rmeddis@38
|
594 % OME stage 5: acoustic reflex stapes attenuation
|
rmeddis@38
|
595 % Attenuate the TM response using feedback from LSR fiber activity
|
rmeddis@38
|
596 if segmentStartPTR>efferentDelayPts
|
rmeddis@38
|
597 stapesDisplacement= stapesDisplacement.*...
|
rmeddis@38
|
598 ARattenuation(segmentStartPTR-efferentDelayPts:...
|
rmeddis@38
|
599 segmentEndPTR-efferentDelayPts);
|
rmeddis@38
|
600 end
|
rmeddis@38
|
601
|
rmeddis@38
|
602 % segment debugging plots
|
rmeddis@38
|
603 % figure(98)
|
rmeddis@38
|
604 % plot(segmentTime, stapesDisplacement), title ('stapesDisplacement')
|
rmeddis@38
|
605
|
rmeddis@38
|
606 % and save
|
rmeddis@38
|
607 OMEoutput(segmentStartPTR:segmentEndPTR)= stapesDisplacement;
|
rmeddis@38
|
608
|
rmeddis@38
|
609
|
rmeddis@38
|
610 %% BM ------------------------------
|
rmeddis@38
|
611 % Each location is computed separately
|
rmeddis@38
|
612 for BFno=1:nBFs
|
rmeddis@38
|
613
|
rmeddis@38
|
614 % *linear* path
|
rmeddis@38
|
615 linOutput = stapesDisplacement * linGAIN; % linear gain
|
rmeddis@38
|
616
|
rmeddis@38
|
617 for order = 1 : GTlinOrder
|
rmeddis@38
|
618 [linOutput GTlinBdry{BFno,order}] = ...
|
rmeddis@38
|
619 filter(GTlin_b(BFno,:), GTlin_a(BFno,:), linOutput, ...
|
rmeddis@38
|
620 GTlinBdry{BFno,order});
|
rmeddis@38
|
621 end
|
rmeddis@38
|
622
|
rmeddis@38
|
623 % *nonLinear* path
|
rmeddis@38
|
624 % efferent attenuation (0 <> 1)
|
rmeddis@38
|
625 if segmentStartPTR>efferentDelayPts
|
rmeddis@38
|
626 MOC=MOCattenuation(BFno, segmentStartPTR-efferentDelayPts:...
|
rmeddis@38
|
627 segmentEndPTR-efferentDelayPts);
|
rmeddis@38
|
628 else % no MOC available yet
|
rmeddis@38
|
629 MOC=ones(1, segmentLength);
|
rmeddis@38
|
630 end
|
rmeddis@38
|
631 % apply MOC to nonlinear input function
|
rmeddis@38
|
632 nonlinOutput=stapesDisplacement.* MOC;
|
rmeddis@38
|
633
|
rmeddis@38
|
634 % first gammatone filter (nonlin path)
|
rmeddis@38
|
635 for order = 1 : GTnonlinOrder
|
rmeddis@38
|
636 [nonlinOutput GTnonlinBdry1{BFno,order}] = ...
|
rmeddis@38
|
637 filter(GTnonlin_b(BFno,:), GTnonlin_a(BFno,:), ...
|
rmeddis@38
|
638 nonlinOutput, GTnonlinBdry1{BFno,order});
|
rmeddis@38
|
639 end
|
rmeddis@38
|
640
|
rmeddis@38
|
641 % % original broken stick instantaneous compression
|
rmeddis@38
|
642 % y= nonlinOutput.* DRNLa; % linear section.
|
rmeddis@38
|
643 % % compress parts of the signal above the compression threshold
|
rmeddis@38
|
644 % abs_x = abs(nonlinOutput);
|
rmeddis@38
|
645 % idx=find(abs_x>DRNLcompressionThreshold);
|
rmeddis@38
|
646 % if ~isempty(idx)>0
|
rmeddis@38
|
647 % y(idx)=sign(y(idx)).* (DRNLb*abs_x(idx).^DRNLc);
|
rmeddis@38
|
648 % end
|
rmeddis@38
|
649 % nonlinOutput=y;
|
rmeddis@38
|
650
|
rmeddis@38
|
651
|
rmeddis@38
|
652 % new broken stick instantaneous compression
|
rmeddis@38
|
653 y= nonlinOutput.* DRNLa; % linear section attenuation/gain.
|
rmeddis@38
|
654 % compress parts of the signal above the compression threshold
|
rmeddis@38
|
655 % holdY=y;
|
rmeddis@38
|
656 abs_y = abs(y);
|
rmeddis@38
|
657 idx=find(abs_y>DRNLcompressionThreshold);
|
rmeddis@38
|
658 if ~isempty(idx)>0
|
rmeddis@38
|
659 % y(idx)=sign(y(idx)).* (DRNLcompressionThreshold + ...
|
rmeddis@38
|
660 % (abs_y(idx)-DRNLcompressionThreshold).^DRNLc);
|
rmeddis@38
|
661 y(idx)=sign(y(idx)).* (DRNLcompressionThreshold + ...
|
rmeddis@38
|
662 (abs_y(idx)-DRNLcompressionThreshold)*DRNLc);
|
rmeddis@38
|
663 end
|
rmeddis@38
|
664 nonlinOutput=y;
|
rmeddis@38
|
665
|
rmeddis@38
|
666 % % Boltzmann compression
|
rmeddis@38
|
667 % y=(nonlinOutput * DRNLa*100000);
|
rmeddis@38
|
668 % holdY=y;
|
rmeddis@38
|
669 % y=abs(y);
|
rmeddis@38
|
670 % s=10; u=0.0;
|
rmeddis@38
|
671 % x=1./(1+exp(-(y-u)/s))-0.5;
|
rmeddis@38
|
672 % nonlinOutput=sign(nonlinOutput).*x/10000;
|
rmeddis@38
|
673
|
rmeddis@38
|
674
|
rmeddis@38
|
675 % if segmentStartPTR==10*segmentLength+1
|
rmeddis@38
|
676 % figure(90)
|
rmeddis@38
|
677 % plot(holdY,'b'), hold on
|
rmeddis@38
|
678 % plot(nonlinOutput, 'r'), hold off
|
rmeddis@38
|
679 % ylim([-1e-5 1e-5])
|
rmeddis@38
|
680 % pause(1)
|
rmeddis@38
|
681 % end
|
rmeddis@38
|
682
|
rmeddis@38
|
683 % second filter removes distortion products
|
rmeddis@38
|
684 for order = 1 : GTnonlinOrder
|
rmeddis@38
|
685 [ nonlinOutput GTnonlinBdry2{BFno,order}] = ...
|
rmeddis@38
|
686 filter(GTnonlin_b(BFno,:), GTnonlin_a(BFno,:), ...
|
rmeddis@38
|
687 nonlinOutput, GTnonlinBdry2{BFno,order});
|
rmeddis@38
|
688 end
|
rmeddis@38
|
689
|
rmeddis@38
|
690 % combine the two paths to give the DRNL displacement
|
rmeddis@38
|
691 DRNLresponse(BFno,:)=linOutput+nonlinOutput;
|
rmeddis@38
|
692 % disp(num2str(max(linOutput)))
|
rmeddis@38
|
693 end % BF
|
rmeddis@38
|
694
|
rmeddis@38
|
695 % segment debugging plots
|
rmeddis@38
|
696 % figure(98)
|
rmeddis@38
|
697 % if size(DRNLresponse,1)>3
|
rmeddis@38
|
698 % imagesc(DRNLresponse) % matrix display
|
rmeddis@38
|
699 % title('DRNLresponse'); % single or double channel response
|
rmeddis@38
|
700 % else
|
rmeddis@38
|
701 % plot(segmentTime, DRNLresponse)
|
rmeddis@38
|
702 % end
|
rmeddis@38
|
703
|
rmeddis@38
|
704 % and save it
|
rmeddis@38
|
705 DRNLoutput(:, segmentStartPTR:segmentEndPTR)= DRNLresponse;
|
rmeddis@38
|
706
|
rmeddis@38
|
707
|
rmeddis@38
|
708 %% IHC ------------------------------------
|
rmeddis@38
|
709 % BM displacement to IHCciliaDisplacement is a high-pass filter
|
rmeddis@38
|
710 % because of viscous coupling
|
rmeddis@38
|
711 for idx=1:nBFs
|
rmeddis@38
|
712 [IHCciliaDisplacement(idx,:) IHCciliaBndry{idx}] = ...
|
rmeddis@38
|
713 filter(IHCciliaFilter_b,IHCciliaFilter_a, ...
|
rmeddis@38
|
714 DRNLresponse(idx,:), IHCciliaBndry{idx});
|
rmeddis@38
|
715 end
|
rmeddis@38
|
716
|
rmeddis@38
|
717 % apply scalar
|
rmeddis@38
|
718 IHCciliaDisplacement=IHCciliaDisplacement* IHC_C;
|
rmeddis@38
|
719
|
rmeddis@38
|
720 % and save it
|
rmeddis@38
|
721 IHC_cilia_output(:,segmentStartPTR:segmentStartPTR+segmentLength-1)=...
|
rmeddis@38
|
722 IHCciliaDisplacement;
|
rmeddis@38
|
723
|
rmeddis@38
|
724 % compute apical conductance
|
rmeddis@38
|
725 G=IHCGmax./(1+exp(-(IHCciliaDisplacement-IHCu0)/IHCs0).*...
|
rmeddis@38
|
726 (1+exp(-(IHCciliaDisplacement-IHCu1)/IHCs1)));
|
rmeddis@38
|
727 Gu=G + IHCGa;
|
rmeddis@38
|
728
|
rmeddis@38
|
729 % Compute receptor potential
|
rmeddis@38
|
730 for idx=1:segmentLength
|
rmeddis@38
|
731 IHC_Vnow=IHC_Vnow+ (-Gu(:, idx).*(IHC_Vnow-IHC_Et)-...
|
rmeddis@38
|
732 IHC_Gk*(IHC_Vnow-IHC_Ekp))* dt/IHC_Cab;
|
rmeddis@38
|
733 IHC_RP(:,idx)=IHC_Vnow;
|
rmeddis@38
|
734 end
|
rmeddis@38
|
735
|
rmeddis@38
|
736 % segment debugging plots
|
rmeddis@38
|
737 % if size(IHC_RP,1)>3
|
rmeddis@38
|
738 % surf(IHC_RP), shading interp, title('IHC_RP')
|
rmeddis@38
|
739 % else
|
rmeddis@38
|
740 % plot(segmentTime, IHC_RP)
|
rmeddis@38
|
741 % end
|
rmeddis@38
|
742
|
rmeddis@38
|
743 % and save it
|
rmeddis@38
|
744 IHCoutput(:, segmentStartPTR:segmentStartPTR+segmentLength-1)=IHC_RP;
|
rmeddis@38
|
745
|
rmeddis@38
|
746
|
rmeddis@38
|
747 %% synapse -----------------------------
|
rmeddis@38
|
748 % Compute the vesicle release rate for each fiber type at each BF
|
rmeddis@38
|
749 % replicate IHC_RP for each fiber type
|
rmeddis@38
|
750 Vsynapse=repmat(IHC_RP, nANfiberTypes,1);
|
rmeddis@38
|
751
|
rmeddis@38
|
752 % look-up table of target fraction channels open for a given IHC_RP
|
rmeddis@38
|
753 mICaINF= 1./( 1 + exp(-gamma * Vsynapse) /beta);
|
rmeddis@38
|
754 % fraction of channel open - apply time constant
|
rmeddis@38
|
755 for idx=1:segmentLength
|
rmeddis@38
|
756 % mICaINF is the current 'target' value of mICa
|
rmeddis@38
|
757 mICaCurrent=mICaCurrent+(mICaINF(:,idx)-mICaCurrent)*dt./tauM;
|
rmeddis@38
|
758 mICa(:,idx)=mICaCurrent;
|
rmeddis@38
|
759 end
|
rmeddis@38
|
760
|
rmeddis@38
|
761 ICa= (GmaxCa* mICa.^3) .* (Vsynapse- ECa);
|
rmeddis@38
|
762
|
rmeddis@38
|
763 for idx=1:segmentLength
|
rmeddis@38
|
764 CaCurrent=CaCurrent + ICa(:,idx)*dt - CaCurrent*dt./tauCa;
|
rmeddis@38
|
765 synapticCa(:,idx)=CaCurrent;
|
rmeddis@38
|
766 end
|
rmeddis@38
|
767 synapticCa=-synapticCa; % treat synapticCa as positive substance
|
rmeddis@38
|
768
|
rmeddis@38
|
769 % NB vesicleReleaseRate is /s and is independent of dt
|
rmeddis@38
|
770 vesicleReleaseRate = synapse_z * synapticCa.^synapse_power; % rate
|
rmeddis@38
|
771
|
rmeddis@38
|
772 % segment debugging plots
|
rmeddis@38
|
773 % if size(vesicleReleaseRate,1)>3
|
rmeddis@38
|
774 % surf(vesicleReleaseRate), shading interp, title('vesicleReleaseRate')
|
rmeddis@38
|
775 % else
|
rmeddis@38
|
776 % plot(segmentTime, vesicleReleaseRate)
|
rmeddis@38
|
777 % end
|
rmeddis@38
|
778
|
rmeddis@38
|
779
|
rmeddis@38
|
780 %% AN
|
rmeddis@38
|
781 switch AN_spikesOrProbability
|
rmeddis@38
|
782 case 'probability'
|
rmeddis@38
|
783 % No refractory effect is applied
|
rmeddis@38
|
784 for t = 1:segmentLength;
|
rmeddis@38
|
785 M_Pq=PAN_M-Pavailable;
|
rmeddis@38
|
786 M_Pq(M_Pq<0)=0;
|
rmeddis@38
|
787 Preplenish = M_Pq .* PAN_ydt;
|
rmeddis@38
|
788 Pejected = Pavailable.* vesicleReleaseRate(:,t)*dt;
|
rmeddis@38
|
789 Preprocessed = M_Pq.*Preprocess.* PAN_xdt;
|
rmeddis@38
|
790
|
rmeddis@38
|
791 ANprobability(:,t)= min(Pejected,1);
|
rmeddis@38
|
792 reuptakeandlost= PAN_rdt_plus_ldt .* Pcleft;
|
rmeddis@38
|
793 reuptake= PAN_rdt.* Pcleft;
|
rmeddis@38
|
794
|
rmeddis@38
|
795 Pavailable= Pavailable+ Preplenish- Pejected+ Preprocessed;
|
rmeddis@38
|
796 Pcleft= Pcleft + Pejected - reuptakeandlost;
|
rmeddis@38
|
797 Preprocess= Preprocess + reuptake - Preprocessed;
|
rmeddis@38
|
798 Pavailable(Pavailable<0)=0;
|
rmeddis@38
|
799 savePavailableSeg(:,t)=Pavailable; % synapse tracking
|
rmeddis@38
|
800
|
rmeddis@38
|
801 end
|
rmeddis@38
|
802
|
rmeddis@38
|
803 % and save it as *rate*
|
rmeddis@38
|
804 ANrate=ANprobability/dt;
|
rmeddis@38
|
805 ANprobRateOutput(:, segmentStartPTR:...
|
rmeddis@38
|
806 segmentStartPTR+segmentLength-1)= ANrate;
|
rmeddis@38
|
807 % monitor synapse contents (only sometimes used)
|
rmeddis@38
|
808 savePavailable(:, segmentStartPTR:segmentStartPTR+segmentLength-1)=...
|
rmeddis@38
|
809 savePavailableSeg;
|
rmeddis@38
|
810
|
rmeddis@38
|
811 %% Apply refractory effect
|
rmeddis@38
|
812 % the probability of a spike's occurring in the preceding
|
rmeddis@38
|
813 % refractory window (t= tnow-refractory period to tnow-)
|
rmeddis@38
|
814 % pFired= 1 - II(1-p(t)),
|
rmeddis@38
|
815 % we need a running account of cumProb=II(1-p(t))
|
rmeddis@38
|
816 % cumProb(t)= cumProb(t-1)*(1-p(t))/(1-p(t-refracPeriod))
|
rmeddis@38
|
817 % cumProb(0)=0
|
rmeddis@38
|
818 % pFired(t)= 1-cumProb(t)
|
rmeddis@38
|
819 % This gives the fraction of firing events that must be
|
rmeddis@38
|
820 % discounted because of a firing event in the refractory
|
rmeddis@38
|
821 % period
|
rmeddis@38
|
822 % p(t)= ANprobOutput(t) * pFired(t)
|
rmeddis@38
|
823 % where ANprobOutput is the uncorrected firing probability
|
rmeddis@38
|
824 % based on vesicle release rate
|
rmeddis@38
|
825 % NB this covers only the absoute refractory period
|
rmeddis@38
|
826 % not the relative refractory period. To approximate this it
|
rmeddis@38
|
827 % is necessary to extend the refractory period by 50%
|
rmeddis@38
|
828
|
rmeddis@38
|
829
|
rmeddis@38
|
830 for t = segmentStartPTR:segmentEndPTR;
|
rmeddis@38
|
831 if t>1
|
rmeddis@38
|
832 ANprobRateOutput(:,t)= ANprobRateOutput(:,t)...
|
rmeddis@38
|
833 .* cumANnotFireProb(:,t-1);
|
rmeddis@38
|
834 end
|
rmeddis@38
|
835 % add recent and remove distant probabilities
|
rmeddis@38
|
836 refrac=round(lengthAbsRefractoryP * 1.5);
|
rmeddis@38
|
837 if t>refrac
|
rmeddis@38
|
838 cumANnotFireProb(:,t)= cumANnotFireProb(:,t-1)...
|
rmeddis@38
|
839 .*(1-ANprobRateOutput(:,t)*dt)...
|
rmeddis@38
|
840 ./(1-ANprobRateOutput(:,t-refrac)*dt);
|
rmeddis@38
|
841 end
|
rmeddis@38
|
842 end
|
rmeddis@38
|
843 % figure(88), plot(cumANnotFireProb'), title('cumNotFire')
|
rmeddis@38
|
844 % figure(89), plot(ANprobRateOutput'), title('ANprobRateOutput')
|
rmeddis@38
|
845
|
rmeddis@38
|
846 %% Estimate efferent effects. ARattenuation (0 <> 1)
|
rmeddis@38
|
847 % acoustic reflex
|
rmeddis@38
|
848 [r c]=size(ANrate);
|
rmeddis@38
|
849 if r>nBFs % Only if LSR fibers are computed
|
rmeddis@38
|
850 ARAttSeg=mean(ANrate(1:nBFs,:),1); %LSR channels are 1:nBF
|
rmeddis@38
|
851 % smooth
|
rmeddis@38
|
852 [ARAttSeg, ARboundaryProb] = ...
|
rmeddis@38
|
853 filter(ARfilt_b, ARfilt_a, ARAttSeg, ARboundaryProb);
|
rmeddis@38
|
854 ARAttSeg=ARAttSeg-ARrateThreshold;
|
rmeddis@38
|
855 ARAttSeg(ARAttSeg<0)=0; % prevent negative strengths
|
rmeddis@38
|
856 ARattenuation(segmentStartPTR:segmentEndPTR)=...
|
rmeddis@38
|
857 (1-ARrateToAttenuationFactorProb.* ARAttSeg);
|
rmeddis@38
|
858 end
|
rmeddis@38
|
859 % plot(ARattenuation)
|
rmeddis@38
|
860
|
rmeddis@38
|
861 % MOC attenuation based on within-channel HSR fiber activity
|
rmeddis@38
|
862 HSRbegins=nBFs*(nANfiberTypes-1)+1;
|
rmeddis@38
|
863 rates=ANrate(HSRbegins:end,:);
|
rmeddis@38
|
864 if rateToAttenuationFactorProb<0
|
rmeddis@38
|
865 % negative factor implies a fixed attenuation
|
rmeddis@38
|
866 MOCattenuation(:,segmentStartPTR:segmentEndPTR)= ...
|
rmeddis@38
|
867 ones(size(rates))* -rateToAttenuationFactorProb;
|
rmeddis@38
|
868 else
|
rmeddis@38
|
869 for idx=1:nBFs
|
rmeddis@38
|
870 [smoothedRates, MOCprobBoundary{idx}] = ...
|
rmeddis@38
|
871 filter(MOCfilt_b, MOCfilt_a, rates(idx,:), ...
|
rmeddis@38
|
872 MOCprobBoundary{idx});
|
rmeddis@38
|
873 smoothedRates=smoothedRates-MOCrateThresholdProb;
|
rmeddis@38
|
874 smoothedRates=max(smoothedRates, 0);
|
rmeddis@38
|
875
|
rmeddis@38
|
876 x=(1- smoothedRates* rateToAttenuationFactorProb);
|
rmeddis@38
|
877 x=max(x, 10^(-30/20));
|
rmeddis@38
|
878 MOCattenuation(idx,segmentStartPTR:segmentEndPTR)= x;
|
rmeddis@38
|
879 end
|
rmeddis@38
|
880 end
|
rmeddis@38
|
881 MOCattenuation(MOCattenuation<0)=0.001;
|
rmeddis@38
|
882
|
rmeddis@38
|
883 % plot(MOCattenuation)
|
rmeddis@38
|
884
|
rmeddis@38
|
885
|
rmeddis@38
|
886 case 'spikes'
|
rmeddis@38
|
887 ANtimeCount=0;
|
rmeddis@38
|
888 % implement speed upt
|
rmeddis@38
|
889 for t = ANspeedUpFactor:ANspeedUpFactor:segmentLength;
|
rmeddis@38
|
890 ANtimeCount=ANtimeCount+1;
|
rmeddis@38
|
891 % convert release rate to probabilities
|
rmeddis@38
|
892 releaseProb=vesicleReleaseRate(:,t)*ANdt;
|
rmeddis@38
|
893 % releaseProb is the release probability per channel
|
rmeddis@38
|
894 % but each channel has many synapses
|
rmeddis@38
|
895 releaseProb=repmat(releaseProb',nFibersPerChannel,1);
|
rmeddis@38
|
896 releaseProb=reshape(releaseProb, nFibersPerChannel*nANchannels,1);
|
rmeddis@38
|
897
|
rmeddis@38
|
898 % AN_available=round(AN_available); % vesicles must be integer, (?needed)
|
rmeddis@38
|
899 M_q=AN_M- AN_available; % number of missing vesicles
|
rmeddis@38
|
900 M_q(M_q<0)= 0; % cannot be less than 0
|
rmeddis@38
|
901
|
rmeddis@38
|
902 % AN_N1 converts probability to discrete events
|
rmeddis@38
|
903 % it considers each event that might occur
|
rmeddis@38
|
904 % (how many vesicles might be released)
|
rmeddis@38
|
905 % and returns a count of how many were released
|
rmeddis@38
|
906
|
rmeddis@38
|
907 % slow line
|
rmeddis@38
|
908 % probabilities= 1-(1-releaseProb).^AN_available;
|
rmeddis@38
|
909 probabilities= 1-intpow((1-releaseProb), AN_available);
|
rmeddis@38
|
910 ejected= probabilities> rand(length(AN_available),1);
|
rmeddis@38
|
911
|
rmeddis@38
|
912 reuptakeandlost = AN_rdt_plus_ldt .* AN_cleft;
|
rmeddis@38
|
913 reuptake = AN_rdt.* AN_cleft;
|
rmeddis@38
|
914
|
rmeddis@38
|
915 % slow line
|
rmeddis@38
|
916 % probabilities= 1-(1-AN_reprocess.*AN_xdt).^M_q;
|
rmeddis@38
|
917 probabilities= 1-intpow((1-AN_reprocess.*AN_xdt), M_q);
|
rmeddis@38
|
918 reprocessed= probabilities>rand(length(M_q),1);
|
rmeddis@38
|
919
|
rmeddis@38
|
920 % slow line
|
rmeddis@38
|
921 % probabilities= 1-(1-AN_ydt).^M_q;
|
rmeddis@38
|
922 probabilities= 1-intpow((1-AN_ydt), M_q);
|
rmeddis@38
|
923
|
rmeddis@38
|
924 replenish= probabilities>rand(length(M_q),1);
|
rmeddis@38
|
925
|
rmeddis@38
|
926 AN_available = AN_available + replenish - ejected ...
|
rmeddis@38
|
927 + reprocessed;
|
rmeddis@38
|
928 AN_cleft = AN_cleft + ejected - reuptakeandlost;
|
rmeddis@38
|
929 AN_reprocess = AN_reprocess + reuptake - reprocessed;
|
rmeddis@38
|
930
|
rmeddis@38
|
931 % ANspikes is logical record of vesicle release events>0
|
rmeddis@38
|
932 ANspikes(:, ANtimeCount)= ejected;
|
rmeddis@38
|
933 end % t
|
rmeddis@38
|
934
|
rmeddis@38
|
935 % zero any events that are preceded by release events ...
|
rmeddis@38
|
936 % within the refractory period
|
rmeddis@38
|
937 % The refractory period consist of two periods
|
rmeddis@38
|
938 % 1) the absolute period where no spikes occur
|
rmeddis@38
|
939 % 2) a relative period where a spike may occur. This relative
|
rmeddis@38
|
940 % period is realised as a variable length interval
|
rmeddis@38
|
941 % where the length is chosen at random
|
rmeddis@38
|
942 % (esentially a linear ramp up)
|
rmeddis@38
|
943
|
rmeddis@38
|
944 % Andreas has a fix for this
|
rmeddis@38
|
945 for t = 1:ANtimeCount-2*lengthAbsRefractory;
|
rmeddis@38
|
946 % identify all spikes across fiber array at time (t)
|
rmeddis@38
|
947 % idx is a list of channels where spikes occurred
|
rmeddis@38
|
948 % ?? try sparse matrices?
|
rmeddis@38
|
949 idx=find(ANspikes(:,t));
|
rmeddis@38
|
950 for j=idx % consider each spike
|
rmeddis@38
|
951 % specify variable refractory period
|
rmeddis@38
|
952 % between abs and 2*abs refractory period
|
rmeddis@38
|
953 nPointsRefractory=lengthAbsRefractory+...
|
rmeddis@38
|
954 round(rand*lengthAbsRefractory);
|
rmeddis@38
|
955 % disable spike potential for refractory period
|
rmeddis@38
|
956 % set all values in this range to 0
|
rmeddis@38
|
957 ANspikes(j,t+1:t+nPointsRefractory)=0;
|
rmeddis@38
|
958 end
|
rmeddis@38
|
959 end %t
|
rmeddis@38
|
960
|
rmeddis@38
|
961 % segment debugging
|
rmeddis@38
|
962 % plotInstructions.figureNo=98;
|
rmeddis@38
|
963 % plotInstructions.displaydt=ANdt;
|
rmeddis@38
|
964 % plotInstructions.numPlots=1;
|
rmeddis@38
|
965 % plotInstructions.subPlotNo=1;
|
rmeddis@38
|
966 % UTIL_plotMatrix(ANspikes, plotInstructions);
|
rmeddis@38
|
967
|
rmeddis@38
|
968 % and save it. NB, AN is now on 'speedUp' time
|
rmeddis@38
|
969 ANoutput(:, reducedSegmentPTR: shorterSegmentEndPTR)=ANspikes;
|
rmeddis@38
|
970
|
rmeddis@38
|
971
|
rmeddis@38
|
972 %% CN Macgregor first neucleus -------------------------------
|
rmeddis@38
|
973 % input is from AN so ANdt is used throughout
|
rmeddis@38
|
974 % Each CNneuron has a unique set of input fibers selected
|
rmeddis@38
|
975 % at random from the available AN fibers (CNinputfiberLists)
|
rmeddis@38
|
976
|
rmeddis@38
|
977 % Create the dendritic current for that neuron
|
rmeddis@38
|
978 % First get input spikes to this neuron
|
rmeddis@38
|
979 synapseNo=1;
|
rmeddis@38
|
980 for ch=1:nCNchannels
|
rmeddis@38
|
981 for idx=1:nCNneuronsPerChannel
|
rmeddis@38
|
982 % determine candidate fibers for this unit
|
rmeddis@38
|
983 fibersUsed=CNinputfiberLists(synapseNo,:);
|
rmeddis@38
|
984 % ANpsth has a bin width of ANdt
|
rmeddis@38
|
985 % (just a simple sum across fibers)
|
rmeddis@38
|
986 AN_PSTH(synapseNo,:) = ...
|
rmeddis@38
|
987 sum(ANspikes(fibersUsed,:), 1);
|
rmeddis@38
|
988 synapseNo=synapseNo+1;
|
rmeddis@38
|
989 end
|
rmeddis@38
|
990 end
|
rmeddis@38
|
991
|
rmeddis@38
|
992 % One alpha function per spike
|
rmeddis@38
|
993 [alphaRows alphaCols]=size(CNtrailingAlphas);
|
rmeddis@38
|
994
|
rmeddis@38
|
995 for unitNo=1:nCNneurons
|
rmeddis@38
|
996 CNcurrentTemp(unitNo,:)= ...
|
rmeddis@38
|
997 conv2(AN_PSTH(unitNo,:),CNalphaFunction);
|
rmeddis@38
|
998 end
|
rmeddis@38
|
999 % disp(['sum(AN_PSTH)= ' num2str(sum(AN_PSTH(1,:)))])
|
rmeddis@38
|
1000 % add post-synaptic current left over from previous segment
|
rmeddis@38
|
1001 CNcurrentTemp(:,1:alphaCols)=...
|
rmeddis@38
|
1002 CNcurrentTemp(:,1:alphaCols)+ CNtrailingAlphas;
|
rmeddis@38
|
1003
|
rmeddis@38
|
1004 % take post-synaptic current for this segment
|
rmeddis@38
|
1005 CNcurrentInput= CNcurrentTemp(:, 1:reducedSegmentLength);
|
rmeddis@38
|
1006 % disp(['mean(CNcurrentInput)= ' num2str(mean(CNcurrentInput(1,:)))])
|
rmeddis@38
|
1007
|
rmeddis@38
|
1008 % trailingalphas are the ends of the alpha functions that
|
rmeddis@38
|
1009 % spill over into the next segment
|
rmeddis@38
|
1010 CNtrailingAlphas= ...
|
rmeddis@38
|
1011 CNcurrentTemp(:, reducedSegmentLength+1:end);
|
rmeddis@38
|
1012
|
rmeddis@38
|
1013 if CN_c>0
|
rmeddis@38
|
1014 % variable threshold condition (slow)
|
rmeddis@38
|
1015 for t=1:reducedSegmentLength
|
rmeddis@38
|
1016 CNtimeSinceLastSpike=CNtimeSinceLastSpike-ANdt;
|
rmeddis@38
|
1017 s=CN_E>CN_Th & CNtimeSinceLastSpike<0 ;
|
rmeddis@38
|
1018 CNtimeSinceLastSpike(s)=0.0005; % 0.5 ms for sodium spike
|
rmeddis@38
|
1019 dE =(-CN_E/CN_tauM + ...
|
rmeddis@38
|
1020 CNcurrentInput(:,t)/CN_cap+(...
|
rmeddis@38
|
1021 CN_Gk/CN_cap).*(CN_Ek-CN_E))*ANdt;
|
rmeddis@38
|
1022 dGk=-CN_Gk*ANdt./tauGk + CN_b*s;
|
rmeddis@38
|
1023 dTh=-(CN_Th-CN_Th0)*ANdt/CN_tauTh + CN_c*s;
|
rmeddis@38
|
1024 CN_E=CN_E+dE;
|
rmeddis@38
|
1025 CN_Gk=CN_Gk+dGk;
|
rmeddis@38
|
1026 CN_Th=CN_Th+dTh;
|
rmeddis@38
|
1027 CNmembranePotential(:,t)=CN_E+s.*(CN_Eb-CN_E)+CN_Er;
|
rmeddis@38
|
1028 end
|
rmeddis@38
|
1029 else
|
rmeddis@38
|
1030 % static threshold (faster)
|
rmeddis@38
|
1031 E=zeros(1,reducedSegmentLength);
|
rmeddis@38
|
1032 Gk=zeros(1,reducedSegmentLength);
|
rmeddis@38
|
1033 ss=zeros(1,reducedSegmentLength);
|
rmeddis@38
|
1034 for t=1:reducedSegmentLength
|
rmeddis@38
|
1035 % time of previous spike moves back in time
|
rmeddis@38
|
1036 CNtimeSinceLastSpike=CNtimeSinceLastSpike-ANdt;
|
rmeddis@38
|
1037 % action potential if E>threshold
|
rmeddis@38
|
1038 % allow time for s to reset between events
|
rmeddis@38
|
1039 s=CN_E>CN_Th0 & CNtimeSinceLastSpike<0 ;
|
rmeddis@38
|
1040 ss(t)=s(1);
|
rmeddis@38
|
1041 CNtimeSinceLastSpike(s)=0.0005; % 0.5 ms for sodium spike
|
rmeddis@38
|
1042 dE = (-CN_E/CN_tauM + ...
|
rmeddis@38
|
1043 CNcurrentInput(:,t)/CN_cap +...
|
rmeddis@38
|
1044 (CN_Gk/CN_cap).*(CN_Ek-CN_E))*ANdt;
|
rmeddis@38
|
1045 dGk=-CN_Gk*ANdt./tauGk +CN_b*s;
|
rmeddis@38
|
1046 CN_E=CN_E+dE;
|
rmeddis@38
|
1047 CN_Gk=CN_Gk+dGk;
|
rmeddis@38
|
1048 E(t)=CN_E(1);
|
rmeddis@38
|
1049 Gk(t)=CN_Gk(1);
|
rmeddis@38
|
1050 % add spike to CN_E and add resting potential (-60 mV)
|
rmeddis@38
|
1051 CNmembranePotential(:,t)=CN_E +s.*(CN_Eb-CN_E)+CN_Er;
|
rmeddis@38
|
1052 end
|
rmeddis@38
|
1053 end
|
rmeddis@38
|
1054 % disp(['CN_E= ' num2str(sum(CN_E(1,:)))])
|
rmeddis@38
|
1055 % disp(['CN_Gk= ' num2str(sum(CN_Gk(1,:)))])
|
rmeddis@38
|
1056 % disp(['CNmembranePotential= ' num2str(sum(CNmembranePotential(1,:)))])
|
rmeddis@38
|
1057 % plot(CNmembranePotential(1,:))
|
rmeddis@38
|
1058
|
rmeddis@38
|
1059
|
rmeddis@38
|
1060 % extract spikes. A spike is a substantial upswing in voltage
|
rmeddis@38
|
1061 CN_spikes=CNmembranePotential> -0.02;
|
rmeddis@38
|
1062 % disp(['CNspikesbefore= ' num2str(sum(sum(CN_spikes)))])
|
rmeddis@38
|
1063
|
rmeddis@38
|
1064 % now remove any spike that is immediately followed by a spike
|
rmeddis@38
|
1065 % NB 'find' works on columns (whence the transposing)
|
rmeddis@38
|
1066 % for each spike put a zero in the next epoch
|
rmeddis@38
|
1067 CN_spikes=CN_spikes';
|
rmeddis@38
|
1068 idx=find(CN_spikes);
|
rmeddis@38
|
1069 idx=idx(1:end-1);
|
rmeddis@38
|
1070 CN_spikes(idx+1)=0;
|
rmeddis@38
|
1071 CN_spikes=CN_spikes';
|
rmeddis@38
|
1072 % disp(['CNspikes= ' num2str(sum(sum(CN_spikes)))])
|
rmeddis@38
|
1073
|
rmeddis@38
|
1074 % segment debugging
|
rmeddis@38
|
1075 % plotInstructions.figureNo=98;
|
rmeddis@38
|
1076 % plotInstructions.displaydt=ANdt;
|
rmeddis@38
|
1077 % plotInstructions.numPlots=1;
|
rmeddis@38
|
1078 % plotInstructions.subPlotNo=1;
|
rmeddis@38
|
1079 % UTIL_plotMatrix(CN_spikes, plotInstructions);
|
rmeddis@38
|
1080
|
rmeddis@38
|
1081 % and save it
|
rmeddis@38
|
1082 CNoutput(:, reducedSegmentPTR:shorterSegmentEndPTR)=...
|
rmeddis@38
|
1083 CN_spikes;
|
rmeddis@38
|
1084
|
rmeddis@38
|
1085
|
rmeddis@38
|
1086 %% IC ----------------------------------------------
|
rmeddis@38
|
1087 % MacGregor or some other second order neurons
|
rmeddis@38
|
1088
|
rmeddis@38
|
1089 % combine CN neurons in same channel (BF x AN tau x CNtau)
|
rmeddis@38
|
1090 % i.e. same BF, same tauCa, same CNtau
|
rmeddis@38
|
1091 % to generate inputs to single IC unit
|
rmeddis@38
|
1092 channelNo=0;
|
rmeddis@38
|
1093 for idx=1:nCNneuronsPerChannel: ...
|
rmeddis@38
|
1094 nCNneurons-nCNneuronsPerChannel+1;
|
rmeddis@38
|
1095 channelNo=channelNo+1;
|
rmeddis@38
|
1096 CN_PSTH(channelNo,:)=...
|
rmeddis@38
|
1097 sum(CN_spikes(idx:idx+nCNneuronsPerChannel-1,:));
|
rmeddis@38
|
1098 end
|
rmeddis@38
|
1099
|
rmeddis@38
|
1100 [alphaRows alphaCols]=size(ICtrailingAlphas);
|
rmeddis@38
|
1101 for ICneuronNo=1:nICcells
|
rmeddis@38
|
1102 ICcurrentTemp(ICneuronNo,:)= ...
|
rmeddis@38
|
1103 conv2(CN_PSTH(ICneuronNo,:), IC_CNalphaFunction);
|
rmeddis@38
|
1104 end
|
rmeddis@38
|
1105
|
rmeddis@38
|
1106 % add the unused current from the previous convolution
|
rmeddis@38
|
1107 ICcurrentTemp(:,1:alphaCols)=ICcurrentTemp(:,1:alphaCols)...
|
rmeddis@38
|
1108 + ICtrailingAlphas;
|
rmeddis@38
|
1109 % take what is required and keep the trailing part for next time
|
rmeddis@38
|
1110 inputCurrent=ICcurrentTemp(:, 1:reducedSegmentLength);
|
rmeddis@38
|
1111 ICtrailingAlphas=ICcurrentTemp(:, reducedSegmentLength+1:end);
|
rmeddis@38
|
1112
|
rmeddis@38
|
1113 if IC_c==0
|
rmeddis@38
|
1114 % faster computation when threshold is stable (c==0)
|
rmeddis@38
|
1115 for t=1:reducedSegmentLength
|
rmeddis@38
|
1116 s=IC_E>IC_Th0;
|
rmeddis@38
|
1117 dE = (-IC_E/IC_tauM + inputCurrent(:,t)/IC_cap +...
|
rmeddis@38
|
1118 (IC_Gk/IC_cap).*(IC_Ek-IC_E))*ANdt;
|
rmeddis@38
|
1119 dGk=-IC_Gk*ANdt/IC_tauGk +IC_b*s;
|
rmeddis@38
|
1120 IC_E=IC_E+dE;
|
rmeddis@38
|
1121 IC_Gk=IC_Gk+dGk;
|
rmeddis@38
|
1122 ICmembranePotential(:,t)=IC_E+s.*(IC_Eb-IC_E)+IC_Er;
|
rmeddis@38
|
1123 end
|
rmeddis@38
|
1124 else
|
rmeddis@38
|
1125 % threshold is changing (IC_c>0; e.g. bushy cell)
|
rmeddis@38
|
1126 for t=1:reducedSegmentLength
|
rmeddis@38
|
1127 dE = (-IC_E/IC_tauM + ...
|
rmeddis@38
|
1128 inputCurrent(:,t)/IC_cap + (IC_Gk/IC_cap)...
|
rmeddis@38
|
1129 .*(IC_Ek-IC_E))*ANdt;
|
rmeddis@38
|
1130 IC_E=IC_E+dE;
|
rmeddis@38
|
1131 s=IC_E>IC_Th;
|
rmeddis@38
|
1132 ICmembranePotential(:,t)=IC_E+s.*(IC_Eb-IC_E)+IC_Er;
|
rmeddis@38
|
1133 dGk=-IC_Gk*ANdt/IC_tauGk +IC_b*s;
|
rmeddis@38
|
1134 IC_Gk=IC_Gk+dGk;
|
rmeddis@38
|
1135
|
rmeddis@38
|
1136 % After a spike, the threshold is raised
|
rmeddis@38
|
1137 % otherwise it settles to its baseline
|
rmeddis@38
|
1138 dTh=-(IC_Th-Th0)*ANdt/IC_tauTh +s*IC_c;
|
rmeddis@38
|
1139 IC_Th=IC_Th+dTh;
|
rmeddis@38
|
1140 end
|
rmeddis@38
|
1141 end
|
rmeddis@38
|
1142
|
rmeddis@38
|
1143 ICspikes=ICmembranePotential> -0.01;
|
rmeddis@38
|
1144 % now remove any spike that is immediately followed by a spike
|
rmeddis@38
|
1145 % NB 'find' works on columns (whence the transposing)
|
rmeddis@38
|
1146 ICspikes=ICspikes';
|
rmeddis@38
|
1147 idx=find(ICspikes);
|
rmeddis@38
|
1148 idx=idx(1:end-1);
|
rmeddis@38
|
1149 ICspikes(idx+1)=0;
|
rmeddis@38
|
1150 ICspikes=ICspikes';
|
rmeddis@38
|
1151
|
rmeddis@38
|
1152 nCellsPerTau= nICcells/nANfiberTypes;
|
rmeddis@38
|
1153 firstCell=1;
|
rmeddis@38
|
1154 lastCell=nCellsPerTau;
|
rmeddis@38
|
1155 for tauCount=1:nANfiberTypes
|
rmeddis@38
|
1156 % separate rates according to fiber types
|
rmeddis@38
|
1157 % currently only the last segment is saved
|
rmeddis@38
|
1158 ICfiberTypeRates(tauCount, ...
|
rmeddis@38
|
1159 reducedSegmentPTR:shorterSegmentEndPTR)=...
|
rmeddis@38
|
1160 sum(ICspikes(firstCell:lastCell, :))...
|
rmeddis@38
|
1161 /(nCellsPerTau*ANdt);
|
rmeddis@38
|
1162 firstCell=firstCell+nCellsPerTau;
|
rmeddis@38
|
1163 lastCell=lastCell+nCellsPerTau;
|
rmeddis@38
|
1164 end
|
rmeddis@38
|
1165
|
rmeddis@38
|
1166 ICoutput(:,reducedSegmentPTR:shorterSegmentEndPTR)=ICspikes;
|
rmeddis@38
|
1167
|
rmeddis@38
|
1168 % store membrane output on original dt scale
|
rmeddis@38
|
1169 % do this for single channel models only
|
rmeddis@38
|
1170 % and only for the HSR-driven IC cells
|
rmeddis@38
|
1171 if round(nICcells/length(ANtauCas))==1 % single channel
|
rmeddis@38
|
1172 % select HSR driven cells
|
rmeddis@38
|
1173 x= ICmembranePotential(length(ANtauCas),:);
|
rmeddis@38
|
1174 % restore original dt
|
rmeddis@38
|
1175 x= repmat(x, ANspeedUpFactor,1);
|
rmeddis@38
|
1176 x= reshape(x,1,segmentLength);
|
rmeddis@38
|
1177 if nANfiberTypes>1 % save HSR and LSR
|
rmeddis@38
|
1178 y=repmat(ICmembranePotential(end,:),...
|
rmeddis@38
|
1179 ANspeedUpFactor,1);
|
rmeddis@38
|
1180 y= reshape(y,1,segmentLength);
|
rmeddis@38
|
1181 x=[x; y];
|
rmeddis@38
|
1182 end
|
rmeddis@38
|
1183 ICmembraneOutput(:, segmentStartPTR:segmentEndPTR)= x;
|
rmeddis@38
|
1184 end
|
rmeddis@38
|
1185
|
rmeddis@38
|
1186 % estimate efferent effects.
|
rmeddis@38
|
1187 % ARis based on LSR units. LSR channels are 1:nBF
|
rmeddis@38
|
1188 if nANfiberTypes>1 % AR is multi-channel only
|
rmeddis@38
|
1189 ARAttSeg=sum(ICspikes(1:nBFs,:),1)/ANdt;
|
rmeddis@38
|
1190 [ARAttSeg, ARboundary] = ...
|
rmeddis@38
|
1191 filter(ARfilt_b, ARfilt_a, ARAttSeg, ARboundary);
|
rmeddis@38
|
1192 ARAttSeg=ARAttSeg-ARrateThreshold;
|
rmeddis@38
|
1193 ARAttSeg(ARAttSeg<0)=0; % prevent negative strengths
|
rmeddis@38
|
1194 % scale up to dt from ANdt
|
rmeddis@38
|
1195 x= repmat(ARAttSeg, ANspeedUpFactor,1);
|
rmeddis@38
|
1196 x=reshape(x,1,segmentLength);
|
rmeddis@38
|
1197 ARattenuation(segmentStartPTR:segmentEndPTR)=...
|
rmeddis@38
|
1198 (1-ARrateToAttenuationFactor* x);
|
rmeddis@38
|
1199 ARattenuation(ARattenuation<0)=0.001;
|
rmeddis@38
|
1200 else
|
rmeddis@38
|
1201 % single channel model; disable AR
|
rmeddis@38
|
1202 ARattenuation(segmentStartPTR:segmentEndPTR)=...
|
rmeddis@38
|
1203 ones(1,segmentLength);
|
rmeddis@38
|
1204 end
|
rmeddis@38
|
1205
|
rmeddis@38
|
1206 % MOC attenuation using HSR response only
|
rmeddis@38
|
1207 % Separate MOC effect for each BF
|
rmeddis@38
|
1208 HSRbegins=nBFs*(nANfiberTypes-1)+1;
|
rmeddis@38
|
1209 rates=ICspikes(HSRbegins:end,:)/ANdt;
|
rmeddis@38
|
1210 for idx=1:nBFs
|
rmeddis@38
|
1211 [smoothedRates, MOCboundary{idx}] = ...
|
rmeddis@38
|
1212 filter(MOCfilt_b, MOCfilt_a, rates(idx,:), ...
|
rmeddis@38
|
1213 MOCboundary{idx});
|
rmeddis@38
|
1214 % spont 'rates' is zero for IC
|
rmeddis@38
|
1215 MOCattSegment(idx,:)=smoothedRates;
|
rmeddis@38
|
1216 % expand timescale back to model dt from ANdt
|
rmeddis@38
|
1217 x= repmat(MOCattSegment(idx,:), ANspeedUpFactor,1);
|
rmeddis@38
|
1218 x= reshape(x,1,segmentLength);
|
rmeddis@38
|
1219 MOCattenuation(idx,segmentStartPTR:segmentEndPTR)= ...
|
rmeddis@38
|
1220 (1- MOCrateToAttenuationFactor* x);
|
rmeddis@38
|
1221 end
|
rmeddis@38
|
1222 MOCattenuation(MOCattenuation<0)=0.04;
|
rmeddis@38
|
1223 % segment debugging
|
rmeddis@38
|
1224 % plotInstructions.figureNo=98;
|
rmeddis@38
|
1225 % plotInstructions.displaydt=ANdt;
|
rmeddis@38
|
1226 % plotInstructions.numPlots=1;
|
rmeddis@38
|
1227 % plotInstructions.subPlotNo=1;
|
rmeddis@38
|
1228 % UTIL_plotMatrix(ICspikes, plotInstructions);
|
rmeddis@38
|
1229
|
rmeddis@38
|
1230 end % AN_spikesOrProbability
|
rmeddis@38
|
1231 segmentStartPTR=segmentStartPTR+segmentLength;
|
rmeddis@38
|
1232 reducedSegmentPTR=reducedSegmentPTR+reducedSegmentLength;
|
rmeddis@38
|
1233
|
rmeddis@38
|
1234
|
rmeddis@38
|
1235 end % segment
|
rmeddis@38
|
1236
|
rmeddis@38
|
1237 %% apply refractory correction to spike probabilities
|
rmeddis@38
|
1238
|
rmeddis@38
|
1239 % the probability of a spike's having occurred in the preceding
|
rmeddis@38
|
1240 % refractory window
|
rmeddis@38
|
1241 % pFired= 1 - II(1-p(t)), t= tnow-refractory period: tnow-1
|
rmeddis@38
|
1242 % we need a running account of cumProb=II(1-p(t))
|
rmeddis@38
|
1243 % cumProb(t)= cumProb(t-1)*(1-p(t-1))/(1-p(t-refracPeriod))
|
rmeddis@38
|
1244 % cumProb(0)=0
|
rmeddis@38
|
1245 % pFired(t)= 1-cumProb(t)
|
rmeddis@38
|
1246 % whence
|
rmeddis@38
|
1247 % p(t)= ANprobOutput(t) * pFired(t)
|
rmeddis@38
|
1248 % where ANprobOutput is the uncorrected probability
|
rmeddis@38
|
1249
|
rmeddis@38
|
1250
|
rmeddis@38
|
1251 % switch AN_spikesOrProbability
|
rmeddis@38
|
1252 % case 'probability'
|
rmeddis@38
|
1253 % ANprobOutput=ANprobRateOutput*dt;
|
rmeddis@38
|
1254 % [r nEpochs]=size(ANprobOutput);
|
rmeddis@38
|
1255 % % find probability of no spikes in refractory period
|
rmeddis@38
|
1256 % pNoSpikesInRefrac=ones(size(ANprobOutput));
|
rmeddis@38
|
1257 % pSpike=zeros(size(ANprobOutput));
|
rmeddis@38
|
1258 % for epochNo=lengthAbsRefractoryP+2:nEpochs
|
rmeddis@38
|
1259 % pNoSpikesInRefrac(:,epochNo)=...
|
rmeddis@38
|
1260 % pNoSpikesInRefrac(:,epochNo-2)...
|
rmeddis@38
|
1261 % .*(1-pSpike(:,epochNo-1))...
|
rmeddis@38
|
1262 % ./(1-pSpike(:,epochNo-lengthAbsRefractoryP-1));
|
rmeddis@38
|
1263 % pSpike(:,epochNo)= ANprobOutput(:,epochNo)...
|
rmeddis@38
|
1264 % .*pNoSpikesInRefrac(:,epochNo);
|
rmeddis@38
|
1265 % end
|
rmeddis@38
|
1266 % ANprobRateOutput=pSpike/dt;
|
rmeddis@38
|
1267 % end
|
rmeddis@38
|
1268
|
rmeddis@38
|
1269 path(restorePath)
|