rmeddis@38
|
1 function [iih,IPIhisttime,IPIhistweight]=IPIHextract(IFRAN_pattern, sfreq)
|
rmeddis@38
|
2 %
|
rmeddis@38
|
3 % tracks the formants according to an analysis proposed in Secker-Walker
|
rmeddis@38
|
4 % JASA 1990, section V.A
|
rmeddis@38
|
5 % Tim Jürgens, February 2011, code from Guy Brown included
|
rmeddis@38
|
6 %
|
rmeddis@38
|
7 % input: IFRAN_pattern: pattern of the auditory model (dependend on the number of modules used)
|
rmeddis@38
|
8 % first dimension: frequency channel,
|
rmeddis@38
|
9 % second dimension: time (samples)
|
rmeddis@38
|
10 % sfreq: sampling frequency
|
rmeddis@38
|
11 % output: iih: interpeak-interval histogram, matrix very similar
|
rmeddis@38
|
12 % the plot 5 in the Secker-Walker paper
|
rmeddis@38
|
13 %
|
rmeddis@38
|
14 %
|
rmeddis@38
|
15 %
|
rmeddis@38
|
16
|
rmeddis@38
|
17
|
rmeddis@38
|
18 time_axis = 0:1/sfreq:(size(IFRAN_pattern,2)-1)/sfreq;
|
rmeddis@38
|
19
|
rmeddis@38
|
20 %find how many samples of AN_pattern are 10ms and 3ms
|
rmeddis@38
|
21 %one_sample_is_a_time_of = time_axis(2);
|
rmeddis@38
|
22 [tmp, start_time_index] = min(abs(0-time_axis));
|
rmeddis@38
|
23 [tmp, stop20_time_index] = min(abs(0.020-time_axis));
|
rmeddis@38
|
24 number_of_samples20ms = stop20_time_index - start_time_index;
|
rmeddis@38
|
25
|
rmeddis@38
|
26 [tmp, stop10_time_index] = min(abs(0.010-time_axis));
|
rmeddis@38
|
27 number_of_samples10ms = stop10_time_index - start_time_index;
|
rmeddis@38
|
28 every_10ms = 1:number_of_samples10ms:size(IFRAN_pattern,2)-number_of_samples20ms;
|
rmeddis@38
|
29
|
rmeddis@38
|
30 hamm_window = hamming(11);
|
rmeddis@38
|
31 halfHamming = (length(hamm_window)-1)/2;
|
rmeddis@38
|
32
|
rmeddis@38
|
33 % window normalization
|
rmeddis@38
|
34
|
rmeddis@38
|
35 norm = conv(ones(1,number_of_samples20ms),hamm_window);
|
rmeddis@38
|
36 norm = norm(5+1:end-5)';
|
rmeddis@38
|
37 win_size = number_of_samples20ms;
|
rmeddis@38
|
38 half_win_size = floor(win_size/2);
|
rmeddis@38
|
39 hop_size = number_of_samples10ms;
|
rmeddis@38
|
40
|
rmeddis@38
|
41 %parameters of the autocorrelation
|
rmeddis@38
|
42 params.acfTau=0.1;
|
rmeddis@38
|
43 params.lags=[0:1/sfreq:0.02-1/sfreq];
|
rmeddis@38
|
44 sampledacf = runningACF(IFRAN_pattern,sfreq,params);
|
rmeddis@38
|
45 sampledacf(sampledacf<0)=0;
|
rmeddis@38
|
46 sampledacf = sqrt(sampledacf);
|
rmeddis@38
|
47
|
rmeddis@38
|
48
|
rmeddis@38
|
49 %pre-allocation due to speed
|
rmeddis@38
|
50 %Acorr = zeros(size(IFRAN_pattern,1),size(every_3ms,2),number_of_samples10ms*2+1);
|
rmeddis@38
|
51 %RAcorr = zeros(size(IFRAN_pattern,1),size(every_3ms,2),number_of_samples10ms*2+1);
|
rmeddis@38
|
52 %SRAcorr = zeros(size(IFRAN_pattern,1),size(every_3ms,2),number_of_samples10ms*2+1-10);
|
rmeddis@38
|
53 IPIhisttime = zeros(size(IFRAN_pattern,1),size(every_10ms,2),3);
|
rmeddis@38
|
54 IPIhistweight = zeros(size(IFRAN_pattern,1),size(every_10ms,2),3); %maximum 3 peaks from the SRA
|
rmeddis@38
|
55 iih = zeros(half_win_size,size(sampledacf,1));
|
rmeddis@38
|
56
|
rmeddis@38
|
57
|
rmeddis@38
|
58
|
rmeddis@38
|
59
|
rmeddis@38
|
60
|
rmeddis@38
|
61 for iCounter = 1:size(sampledacf,2) %each channel
|
rmeddis@38
|
62 fprintf('Channel No. %i\n',iCounter);
|
rmeddis@38
|
63 %time_counter = 1;
|
rmeddis@38
|
64 %for jCounter = every_3ms %every 3ms time segment
|
rmeddis@38
|
65
|
rmeddis@38
|
66 for frame=1:size(sampledacf,1)
|
rmeddis@38
|
67
|
rmeddis@38
|
68 %%debug
|
rmeddis@38
|
69 %if iCounter == 130
|
rmeddis@38
|
70 % disp('here');
|
rmeddis@38
|
71 %end
|
rmeddis@38
|
72
|
rmeddis@38
|
73
|
rmeddis@38
|
74 sra = conv(squeeze(sampledacf(frame,iCounter,:)),hamm_window);
|
rmeddis@38
|
75 sra = sra(halfHamming+1:end-halfHamming)./norm;
|
rmeddis@38
|
76 df = [0 ; diff(sra)];
|
rmeddis@38
|
77 idx = find((df(1:end-1)>=0)&(df(2:end)<0));
|
rmeddis@38
|
78 % interpolate
|
rmeddis@38
|
79 a=df(idx);
|
rmeddis@38
|
80 b=df(idx+1);
|
rmeddis@38
|
81 idx = (idx-1+a./(a-b));
|
rmeddis@38
|
82 % get rid of a zero peak, if it exists
|
rmeddis@38
|
83 idx = idx(idx>1);
|
rmeddis@38
|
84 %include the zeroth peak
|
rmeddis@38
|
85 idx = [1 idx']';
|
rmeddis@38
|
86 % peak values corresponding to these intervals
|
rmeddis@38
|
87 amp = interp1(1:length(sra),sra,idx,'linear');
|
rmeddis@38
|
88 % if required, remove peaks that lie below the mean sra
|
rmeddis@38
|
89 % note that we disregard the value at zero delay
|
rmeddis@38
|
90 %if (params.removePeaksBelowMean)
|
rmeddis@38
|
91 valid = find(amp>1.2*mean(sra(1:floor(length(sra)/2))));
|
rmeddis@38
|
92 %valid = find(amp>mean(sra));
|
rmeddis@38
|
93 %just take the mean of the first half of the sra as a comparison
|
rmeddis@38
|
94 idx = idx(valid);
|
rmeddis@38
|
95 amp = amp(valid);
|
rmeddis@38
|
96 %end
|
rmeddis@38
|
97 % only use the first four peaks (three intervals)
|
rmeddis@38
|
98 idx = idx(1:min(4,length(idx)));
|
rmeddis@38
|
99 % find the intervals
|
rmeddis@38
|
100 interval = diff(idx);
|
rmeddis@38
|
101 % now histogram the intervals
|
rmeddis@38
|
102 if (~isempty(interval))
|
rmeddis@38
|
103 for k=1:length(interval)
|
rmeddis@38
|
104 if interval(k)<=half_win_size
|
rmeddis@38
|
105 iih(round(interval(k)),frame) = iih(round(interval(k)),frame)+amp(k);
|
rmeddis@38
|
106 IPIhisttime(iCounter,frame,k) = interval(k)/sfreq;
|
rmeddis@38
|
107 IPIhistweight(iCounter,frame,k) = amp(k);
|
rmeddis@38
|
108 end
|
rmeddis@38
|
109 end
|
rmeddis@38
|
110 end
|
rmeddis@38
|
111
|
rmeddis@38
|
112 end
|
rmeddis@38
|
113
|
rmeddis@38
|
114
|
rmeddis@38
|
115
|
rmeddis@38
|
116
|
rmeddis@38
|
117 %% end Guy's code
|
rmeddis@38
|
118
|
rmeddis@38
|
119
|
rmeddis@38
|
120 % %take the autocorrelation (ACF) of a 10ms-segment of each channel
|
rmeddis@38
|
121 % Acorr(iCounter,time_counter,:) = xcorr(IFRAN_pattern(iCounter,jCounter:number_of_samples10ms+jCounter),'biased'); %biased scales the ACF by the reciprocal of the length of the segment
|
rmeddis@38
|
122 % %root calculation
|
rmeddis@38
|
123 % RAcorr(iCounter,time_counter,:) = sqrt(abs(Acorr(iCounter,time_counter,:)));
|
rmeddis@38
|
124 %
|
rmeddis@38
|
125 % %smoothing using the 11-point hamming window
|
rmeddis@38
|
126 % for kCounter = 6:size(RAcorr(iCounter,time_counter,:),3)-5 %start with 6 and end with 5 samples
|
rmeddis@38
|
127 % %less the length of time_axis not to get in conflict with the length of
|
rmeddis@38
|
128 % %the hamm_window
|
rmeddis@38
|
129 % SRAcorr(iCounter,time_counter,kCounter-5) = ...
|
rmeddis@38
|
130 % squeeze(RAcorr(iCounter,time_counter,(kCounter-5):(kCounter+5)))'*hamm_window./sum(hamm_window);
|
rmeddis@38
|
131 % end
|
rmeddis@38
|
132 %
|
rmeddis@38
|
133 % %mean value of actual SRA
|
rmeddis@38
|
134 % SRA_mean = mean(SRAcorr(iCounter,time_counter,:));
|
rmeddis@38
|
135 %
|
rmeddis@38
|
136 % %find signed zero-crossings of the first derivative (=difference)
|
rmeddis@38
|
137 % z_crossings_indices = find(diff(sign(diff(squeeze(SRAcorr(iCounter,time_counter,:))))) < 0)+1; %+1 is necessary, because diff shortens vector by 1
|
rmeddis@38
|
138 % middle_index = ceil(size(SRAcorr(iCounter,time_counter,:),3)/2);
|
rmeddis@38
|
139 %
|
rmeddis@38
|
140 % validCounter = 1;
|
rmeddis@38
|
141 % valid_z_crossings_indices = [];
|
rmeddis@38
|
142 % %find valid zero-crossings (peak higher than meanvalue and within first 5 ms of SRA)
|
rmeddis@38
|
143 % for lCounter = 1:length(z_crossings_indices)
|
rmeddis@38
|
144 % if (SRAcorr(iCounter,time_counter,z_crossings_indices(lCounter)) > SRA_mean) && ...
|
rmeddis@38
|
145 % (abs(z_crossings_indices(lCounter)-middle_index) < round(number_of_samples10ms/2));
|
rmeddis@38
|
146 % valid_z_crossings_indices(validCounter) = z_crossings_indices(lCounter);
|
rmeddis@38
|
147 % validCounter = validCounter+1;
|
rmeddis@38
|
148 % end
|
rmeddis@38
|
149 % end
|
rmeddis@38
|
150 %
|
rmeddis@38
|
151 % %find main peak in the ACF
|
rmeddis@38
|
152 % [tmp,index_of_z_crossings_main_index] = min(abs(middle_index-valid_z_crossings_indices));
|
rmeddis@38
|
153 % if ~tmp == 0
|
rmeddis@38
|
154 % disp('middle peak not appropriately found');
|
rmeddis@38
|
155 % end
|
rmeddis@38
|
156 %
|
rmeddis@38
|
157 % %%% for debugging
|
rmeddis@38
|
158 % % if iCounter == 130
|
rmeddis@38
|
159 % % disp('here');
|
rmeddis@38
|
160 % % figure, plot(squeeze(SRAcorr(iCounter,time_counter,:)));
|
rmeddis@38
|
161 % % hold on, plot([1 length(squeeze(SRAcorr(iCounter,time_counter,:)))],[SRA_mean SRA_mean],'r-');
|
rmeddis@38
|
162 % % end
|
rmeddis@38
|
163 % %%%
|
rmeddis@38
|
164 %
|
rmeddis@38
|
165 % %generate IPI-histogram: take the first 3 intervals of SRAcorr
|
rmeddis@38
|
166 % %(positive delay) in the first 5 ms
|
rmeddis@38
|
167 % histcounter = 1;
|
rmeddis@38
|
168 % for lCounter = index_of_z_crossings_main_index+1:min([length(valid_z_crossings_indices(index_of_z_crossings_main_index+1:end)) 3])+index_of_z_crossings_main_index
|
rmeddis@38
|
169 % sampledifference = abs(valid_z_crossings_indices(lCounter)-valid_z_crossings_indices(lCounter-1));
|
rmeddis@38
|
170 % %the difference between two adjacent peaks in the SRA is taken
|
rmeddis@38
|
171 % %as IPI estimate
|
rmeddis@38
|
172 % IPIhisttime(iCounter,time_counter,histcounter) = sampledifference*one_sample_is_a_time_of;
|
rmeddis@38
|
173 % %the amplitude of the SRA at the start of the SRA interval is
|
rmeddis@38
|
174 % %taken as the IPIweight
|
rmeddis@38
|
175 % IPIhistweight(iCounter,time_counter,histcounter) = SRAcorr(iCounter,time_counter,valid_z_crossings_indices(lCounter-1));
|
rmeddis@38
|
176 % histcounter = histcounter + 1;
|
rmeddis@38
|
177 % end
|
rmeddis@38
|
178
|
rmeddis@38
|
179 %time_counter = time_counter+1;
|
rmeddis@38
|
180 end
|
rmeddis@38
|
181
|