annotate parameterStore/MAPparamsNormal.m @ 11:f9d6a0bcfacf

unigore word docs for now
author Ray Meddis <rmeddis@essex.ac.uk>
date Tue, 31 May 2011 15:17:19 +0100
parents ecad0ea62b43
children 9fd4960e743a
rev   line source
rmeddis@0 1 function method=MAPparamsNormal ...
rmeddis@0 2 (BFlist, sampleRate, showParams)
rmeddis@0 3 % MAPparams<> establishes a complete set of MAP parameters
rmeddis@0 4 % Parameter file names must be of the form <MAPparams> <name>
rmeddis@0 5 %
rmeddis@0 6 % input arguments
rmeddis@0 7 % BFlist (optional) specifies the desired list of channel BFs
rmeddis@0 8 % otherwise defaults set below
rmeddis@0 9 % sampleRate (optional), default is 50000.
rmeddis@0 10 % showParams (optional) =1 prints out the complete set of parameters
rmeddis@0 11 % output argument
rmeddis@0 12 % method passes a miscelleny of values
rmeddis@0 13
rmeddis@0 14 global inputStimulusParams OMEParams DRNLParams
rmeddis@0 15 global IHC_VResp_VivoParams IHCpreSynapseParams AN_IHCsynapseParams
rmeddis@0 16 global MacGregorParams MacGregorMultiParams filteredSACFParams
rmeddis@0 17 global experiment % used by calls from multiThreshold only
rmeddis@0 18 global IHC_cilia_RPParams
rmeddis@0 19
rmeddis@0 20 currentFile=mfilename; % i.e. the name of this mfile
rmeddis@0 21 method.parameterSource=currentFile(10:end); % for the record
rmeddis@0 22
rmeddis@0 23 switchOffEfferent=0;
rmeddis@0 24 efferentDelay=0.010;
rmeddis@0 25 method.segmentDuration=efferentDelay;
rmeddis@0 26
rmeddis@0 27 if nargin<3, showParams=0; end
rmeddis@0 28 if nargin<2, sampleRate=50000; end
rmeddis@0 29 if nargin<1 || BFlist(1)<0 % if BFlist= -1, set BFlist to default
rmeddis@0 30 lowestBF=250; highestBF= 8000; numChannels=21;
rmeddis@0 31 % 21 chs (250-8k)includes BFs at 250 500 1000 2000 4000 8000
rmeddis@0 32 BFlist=round(logspace(log10(lowestBF),log10(highestBF),numChannels));
rmeddis@0 33 end
rmeddis@0 34 % BFlist=1000;
rmeddis@0 35
rmeddis@0 36 % preserve for backward campatibility
rmeddis@0 37 method.nonlinCF=BFlist;
rmeddis@0 38 method.dt=1/sampleRate;
rmeddis@0 39
rmeddis@0 40 %%%%%%%%%%%%%%%%%%%%%%%%%%%%
rmeddis@0 41 % set model parameters
rmeddis@0 42 %%%%%%%%%%%%%%%%%%%%%%%%%%%%
rmeddis@0 43
rmeddis@0 44 %% #1 inputStimulus
rmeddis@0 45 inputStimulusParams=[];
rmeddis@0 46 inputStimulusParams.sampleRate= sampleRate;
rmeddis@0 47
rmeddis@0 48 %% #2 outerMiddleEar
rmeddis@0 49 OMEParams=[]; % clear the structure first
rmeddis@0 50 % outer ear resonances band pass filter [gain lp order hp]
rmeddis@0 51 OMEParams.externalResonanceFilters= [ 10 1 1000 4000];
rmeddis@0 52
rmeddis@0 53 % highpass stapes filter
rmeddis@0 54 % Huber gives 2e-9 m at 80 dB and 1 kHz (2e-13 at 0 dB SPL)
rmeddis@0 55 OMEParams.OMEstapesLPcutoff= 1000;
rmeddis@0 56 OMEParams.stapesScalar= 45e-9;
rmeddis@0 57
rmeddis@0 58 % Acoustic reflex: maximum attenuation should be around 25 dB Price (1966)
rmeddis@0 59 % i.e. a minimum ratio of 0.056.
rmeddis@0 60 if ~switchOffEfferent
rmeddis@0 61 % 'spikes' model: AR based on brainstem spiking activity (LSR)
rmeddis@0 62 OMEParams.rateToAttenuationFactor=0.003; % * N(all ICspikes)
rmeddis@0 63 % OMEParams.rateToAttenuationFactor=0; % * N(all ICspikes)
rmeddis@0 64 % 'probability model': Ar based on An firing probabilities (LSR)
rmeddis@0 65 OMEParams.rateToAttenuationFactorProb=0.005;% * N(all ANrates)
rmeddis@0 66 % OMEParams.rateToAttenuationFactorProb=0;% * N(all ANrates)
rmeddis@0 67 else
rmeddis@0 68 OMEParams.rateToAttenuationFactor=0; % 0= off
rmeddis@0 69 OMEParams.rateToAttenuationFactorProb=0; % 0= off
rmeddis@0 70 end
rmeddis@0 71 % asymptote should be around 100-200 ms
rmeddis@0 72 OMEParams.ARtau=.05; % AR smoothing function
rmeddis@0 73 % delay must be longer than the segment length
rmeddis@0 74 OMEParams.ARdelay=efferentDelay; %Moss gives 8.5 ms latency
rmeddis@0 75 OMEParams.ARrateThreshold=0;
rmeddis@0 76
rmeddis@0 77 %% #3 DRNL
rmeddis@0 78 DRNLParams=[]; % clear the structure first
rmeddis@0 79 DRNLParams.BFlist=BFlist;
rmeddis@0 80
rmeddis@0 81 % DRNL nonlinear path
rmeddis@0 82 DRNLParams.a=3e4; % nonlinear path gain (below compression threshold)
rmeddis@9 83 % DRNLParams.a=3e2; % DRNL.a=0 means no OHCs (no nonlinear path)
rmeddis@0 84
rmeddis@0 85 DRNLParams.b=8e-6; % *compression threshold raised compression
rmeddis@0 86 % DRNLParams.b=1; % b=1 means no compression
rmeddis@0 87
rmeddis@0 88 DRNLParams.c=0.2; % compression exponent
rmeddis@0 89 % nonlinear filters
rmeddis@0 90 DRNLParams.nonlinCFs=BFlist;
rmeddis@0 91 DRNLParams.nonlinOrder= 3; % order of nonlinear gammatone filters
rmeddis@0 92 p=0.2895; q=170; % human (% p=0.14; q=366; % cat)
rmeddis@0 93 DRNLParams.nlBWs= p * BFlist + q;
rmeddis@0 94 DRNLParams.p=p; DRNLParams.q=q; % save p and q for printing only
rmeddis@0 95
rmeddis@0 96 % DRNL linear path:
rmeddis@0 97 DRNLParams.g=100; % linear path gain factor
rmeddis@0 98 % linCF is not necessarily the same as nonlinCF
rmeddis@0 99 minLinCF=153.13; coeffLinCF=0.7341; % linCF>nonlinBF for BF < 1 kHz
rmeddis@0 100 DRNLParams.linCFs=minLinCF+coeffLinCF*BFlist;
rmeddis@0 101 DRNLParams.linOrder= 3; % order of linear gammatone filters
rmeddis@0 102 minLinBW=100; coeffLinBW=0.6531;
rmeddis@0 103 DRNLParams.linBWs=minLinBW + coeffLinBW*BFlist; % bandwidths of linear filters
rmeddis@0 104
rmeddis@0 105 % DRNL MOC efferents
rmeddis@0 106 DRNLParams.MOCdelay = efferentDelay; % must be < segment length!
rmeddis@0 107 if ~switchOffEfferent
rmeddis@0 108 % 'spikes' model: MOC based on brainstem spiking activity (HSR)
rmeddis@0 109 DRNLParams.rateToAttenuationFactor = .009; % strength of MOC
rmeddis@0 110 DRNLParams.rateToAttenuationFactor = .009; % strength of MOC
rmeddis@0 111 % DRNLParams.rateToAttenuationFactor = 0; % strength of MOC
rmeddis@0 112
rmeddis@0 113 % 'spikes' model: MOC based on brainstem spiking activity (HSR)
rmeddis@0 114 DRNLParams.rateToAttenuationFactorProb = .002; % strength of MOC
rmeddis@0 115 else
rmeddis@0 116 DRNLParams.rateToAttenuationFactor = 0; % 0 = MOC off (probability)
rmeddis@0 117 DRNLParams.rateToAttenuationFactorProb = 0; % 0 = MOC off (spikes)
rmeddis@0 118 end
rmeddis@0 119 DRNLParams.MOCtau =.03; % smoothing for MOC
rmeddis@0 120 DRNLParams.MOCrateThreshold =50; % set to AN rate threshold
rmeddis@0 121
rmeddis@0 122
rmeddis@0 123 %% #4 IHC_cilia_RPParams
rmeddis@0 124
rmeddis@0 125 IHC_cilia_RPParams.tc= 0.0003; % 0.0003 filter time simulates viscocity
rmeddis@0 126 % IHC_cilia_RPParams.tc= 0.0005; % 0.0003 filter time simulates viscocity
rmeddis@0 127 IHC_cilia_RPParams.C= 0.05; % 0.1 scalar (C_cilia )
rmeddis@0 128 IHC_cilia_RPParams.u0= 5e-9;
rmeddis@0 129 IHC_cilia_RPParams.s0= 30e-9;
rmeddis@0 130 IHC_cilia_RPParams.u1= 1e-9;
rmeddis@0 131 IHC_cilia_RPParams.s1= 1e-9;
rmeddis@0 132
rmeddis@0 133 IHC_cilia_RPParams.Gmax= 5e-9; % 2.5e-9 maximum conductance (Siemens)
rmeddis@8 134 IHC_cilia_RPParams.Ga= 1e-9; % 4.3e-9 fixed apical membrane conductance
rmeddis@0 135
rmeddis@0 136 % #5 IHC_RP
rmeddis@0 137 IHC_cilia_RPParams.Cab= 4e-012; % IHC capacitance (F)
rmeddis@9 138 IHC_cilia_RPParams.Cab= 1e-012; % IHC capacitance (F)
rmeddis@0 139 IHC_cilia_RPParams.Et= 0.100; % endocochlear potential (V)
rmeddis@9 140 IHC_cilia_RPParams.Et= 0.07; % endocochlear potential (V)
rmeddis@0 141
rmeddis@0 142 IHC_cilia_RPParams.Gk= 2e-008; % 1e-8 potassium conductance (S)
rmeddis@0 143 IHC_cilia_RPParams.Ek= -0.08; % -0.084 K equilibrium potential
rmeddis@0 144 IHC_cilia_RPParams.Rpc= 0.04; % combined resistances
rmeddis@0 145
rmeddis@0 146
rmeddis@0 147 %% #5 IHCpreSynapse
rmeddis@0 148 IHCpreSynapseParams=[];
rmeddis@0 149 IHCpreSynapseParams.GmaxCa= 14e-9;% maximum calcium conductance
rmeddis@9 150 IHCpreSynapseParams.GmaxCa= 12e-9;% maximum calcium conductance
rmeddis@0 151 IHCpreSynapseParams.ECa= 0.066; % calcium equilibrium potential
rmeddis@0 152 IHCpreSynapseParams.beta= 400; % determine Ca channel opening
rmeddis@0 153 IHCpreSynapseParams.gamma= 100; % determine Ca channel opening
rmeddis@0 154 IHCpreSynapseParams.tauM= 0.00005; % membrane time constant ?0.1ms
rmeddis@0 155 IHCpreSynapseParams.power= 3;
rmeddis@0 156 % reminder: changing z has a strong effect on HF thresholds (like Et)
rmeddis@0 157 IHCpreSynapseParams.z= 2e42; % scalar Ca -> vesicle release rate
rmeddis@0 158
rmeddis@0 159 LSRtauCa=50e-6; HSRtauCa=85e-6; % seconds
rmeddis@0 160 % LSRtauCa=35e-6; HSRtauCa=70e-6; % seconds
rmeddis@0 161 IHCpreSynapseParams.tauCa= [LSRtauCa HSRtauCa]; %LSR and HSR fiber
rmeddis@0 162
rmeddis@0 163 %% #6 AN_IHCsynapse
rmeddis@0 164 % c=kym/(y(l+r)+kl) (spontaneous rate)
rmeddis@0 165 % c=(approx) ym/l (saturated rate)
rmeddis@0 166 AN_IHCsynapseParams=[]; % clear the structure first
rmeddis@0 167 AN_IHCsynapseParams.M= 12; % maximum vesicles at synapse
rmeddis@0 168 AN_IHCsynapseParams.y= 4; % depleted vesicle replacement rate
rmeddis@0 169 AN_IHCsynapseParams.y= 6; % depleted vesicle replacement rate
rmeddis@0 170
rmeddis@0 171 AN_IHCsynapseParams.x= 30; % replenishment from re-uptake store
rmeddis@0 172 AN_IHCsynapseParams.x= 60; % replenishment from re-uptake store
rmeddis@0 173
rmeddis@0 174 % reduce l to increase saturated rate
rmeddis@0 175 AN_IHCsynapseParams.l= 100; % *loss rate of vesicles from the cleft
rmeddis@0 176 AN_IHCsynapseParams.l= 250; % *loss rate of vesicles from the cleft
rmeddis@0 177
rmeddis@0 178 AN_IHCsynapseParams.r= 500; % *reuptake rate from cleft into cell
rmeddis@0 179 % AN_IHCsynapseParams.r= 300; % *reuptake rate from cleft into cell
rmeddis@0 180
rmeddis@0 181 AN_IHCsynapseParams.refractory_period= 0.00075;
rmeddis@0 182 % number of AN fibers at each BF (used only for spike generation)
rmeddis@0 183 AN_IHCsynapseParams.numFibers= 100;
rmeddis@0 184 AN_IHCsynapseParams.TWdelay=0.004; % ?delay before stimulus first spike
rmeddis@0 185
rmeddis@0 186 %% #7 MacGregorMulti (first order brainstem neurons)
rmeddis@0 187 MacGregorMultiParams=[];
rmeddis@0 188 MacGregorMultiType='chopper'; % MacGregorMultiType='primary-like'; %choose
rmeddis@0 189 switch MacGregorMultiType
rmeddis@0 190 case 'primary-like'
rmeddis@0 191 MacGregorMultiParams.nNeuronsPerBF= 10; % N neurons per BF
rmeddis@0 192 MacGregorMultiParams.type = 'primary-like cell';
rmeddis@0 193 MacGregorMultiParams.fibersPerNeuron=4; % N input fibers
rmeddis@0 194 MacGregorMultiParams.dendriteLPfreq=200; % dendritic filter
rmeddis@0 195 MacGregorMultiParams.currentPerSpike=0.11e-6; % (A) per spike
rmeddis@0 196 MacGregorMultiParams.Cap=4.55e-9; % cell capacitance (Siemens)
rmeddis@0 197 MacGregorMultiParams.tauM=5e-4; % membrane time constant (s)
rmeddis@0 198 MacGregorMultiParams.Ek=-0.01; % K+ eq. potential (V)
rmeddis@0 199 MacGregorMultiParams.dGkSpike=3.64e-5; % K+ cond.shift on spike,S
rmeddis@0 200 MacGregorMultiParams.tauGk= 0.0012; % K+ conductance tau (s)
rmeddis@0 201 MacGregorMultiParams.Th0= 0.01; % equilibrium threshold (V)
rmeddis@0 202 MacGregorMultiParams.c= 0.01; % threshold shift on spike, (V)
rmeddis@0 203 MacGregorMultiParams.tauTh= 0.015; % variable threshold tau
rmeddis@0 204 MacGregorMultiParams.Er=-0.06; % resting potential (V)
rmeddis@0 205 MacGregorMultiParams.Eb=0.06; % spike height (V)
rmeddis@0 206
rmeddis@0 207 case 'chopper'
rmeddis@0 208 MacGregorMultiParams.nNeuronsPerBF= 10; % N neurons per BF
rmeddis@0 209 MacGregorMultiParams.type = 'chopper cell';
rmeddis@0 210 MacGregorMultiParams.fibersPerNeuron=10; % N input fibers
rmeddis@8 211 % MacGregorMultiParams.fibersPerNeuron=6; % N input fibers
rmeddis@0 212
rmeddis@0 213 MacGregorMultiParams.dendriteLPfreq=50; % dendritic filter
rmeddis@8 214 MacGregorMultiParams.currentPerSpike=35e-9; % *per spike
rmeddis@0 215 % MacGregorMultiParams.currentPerSpike=45e-9; % *per spike
rmeddis@0 216
rmeddis@0 217 MacGregorMultiParams.Cap=1.67e-8; % ??cell capacitance (Siemens)
rmeddis@0 218 MacGregorMultiParams.tauM=0.002; % membrane time constant (s)
rmeddis@0 219 MacGregorMultiParams.Ek=-0.01; % K+ eq. potential (V)
rmeddis@0 220 MacGregorMultiParams.dGkSpike=1.33e-4; % K+ cond.shift on spike,S
rmeddis@0 221 MacGregorMultiParams.tauGk= 0.0001;% K+ conductance tau (s)
rmeddis@0 222 MacGregorMultiParams.Th0= 0.01; % equilibrium threshold (V)
rmeddis@0 223 MacGregorMultiParams.c= 0; % threshold shift on spike, (V)
rmeddis@0 224 MacGregorMultiParams.tauTh= 0.02; % variable threshold tau
rmeddis@0 225 MacGregorMultiParams.Er=-0.06; % resting potential (V)
rmeddis@0 226 MacGregorMultiParams.Eb=0.06; % spike height (V)
rmeddis@0 227 MacGregorMultiParams.PSTHbinWidth= 1e-4;
rmeddis@0 228 end
rmeddis@0 229
rmeddis@0 230 %% #8 MacGregor (second-order neuron). Only one per channel
rmeddis@0 231 MacGregorParams=[]; % clear the structure first
rmeddis@0 232 MacGregorParams.type = 'chopper cell';
rmeddis@0 233 MacGregorParams.fibersPerNeuron=10; % N input fibers
rmeddis@0 234 MacGregorParams.dendriteLPfreq=100; % dendritic filter
rmeddis@0 235 MacGregorParams.currentPerSpike=120e-9;% *(A) per spike
rmeddis@0 236
rmeddis@0 237 MacGregorParams.Cap=16.7e-9; % cell capacitance (Siemens)
rmeddis@0 238 MacGregorParams.tauM=0.002; % membrane time constant (s)
rmeddis@0 239 MacGregorParams.Ek=-0.01; % K+ eq. potential (V)
rmeddis@0 240 MacGregorParams.dGkSpike=1.33e-4; % K+ cond.shift on spike,S
rmeddis@0 241 MacGregorParams.tauGk= 0.0003; % K+ conductance tau (s)
rmeddis@0 242 MacGregorParams.Th0= 0.01; % equilibrium threshold (V)
rmeddis@0 243 MacGregorParams.c= 0; % threshold shift on spike, (V)
rmeddis@0 244 MacGregorParams.tauTh= 0.02; % variable threshold tau
rmeddis@0 245 MacGregorParams.Er=-0.06; % resting potential (V)
rmeddis@0 246 MacGregorParams.Eb=0.06; % spike height (V)
rmeddis@0 247 MacGregorParams.debugging=0; % (special)
rmeddis@0 248 % wideband accepts input from all channels (of same fiber type)
rmeddis@0 249 % use wideband to create inhibitory units
rmeddis@0 250 MacGregorParams.wideband=0; % special for wideband units
rmeddis@0 251 % MacGregorParams.saveAllData=0;
rmeddis@0 252
rmeddis@0 253 %% #9 filteredSACF
rmeddis@0 254 minPitch= 300; maxPitch= 3000; numPitches=60; % specify lags
rmeddis@0 255 pitches=100*log10(logspace(minPitch/100, maxPitch/100, numPitches));
rmeddis@0 256 filteredSACFParams.lags=1./pitches; % autocorrelation lags vector
rmeddis@0 257 filteredSACFParams.acfTau= .003; % time constant of running ACF
rmeddis@0 258 filteredSACFParams.lambda= 0.12; % slower filter to smooth ACF
rmeddis@0 259 filteredSACFParams.plotFilteredSACF=1; % 0 plots unfiltered ACFs
rmeddis@0 260 filteredSACFParams.plotACFs=0; % special plot (see code)
rmeddis@0 261 % filteredSACFParams.usePressnitzer=0; % attenuates ACF at long lags
rmeddis@0 262 filteredSACFParams.lagsProcedure= 'useAllLags';
rmeddis@0 263 % filteredSACFParams.lagsProcedure= 'useBernsteinLagWeights';
rmeddis@0 264 % filteredSACFParams.lagsProcedure= 'omitShortLags';
rmeddis@0 265 filteredSACFParams.criterionForOmittingLags=3;
rmeddis@0 266
rmeddis@0 267 % checks
rmeddis@0 268 if AN_IHCsynapseParams.numFibers<MacGregorMultiParams.fibersPerNeuron
rmeddis@0 269 error('MacGregorMulti: too few input fibers for input to MacG unit')
rmeddis@0 270 end
rmeddis@0 271
rmeddis@0 272
rmeddis@0 273 %% write all parameters to the command window
rmeddis@0 274 % showParams is currently set at the top of htis function
rmeddis@0 275 if showParams
rmeddis@0 276 fprintf('\n %%%%%%%%\n')
rmeddis@0 277 fprintf('\n%s\n', method.parameterSource)
rmeddis@0 278 fprintf('\n')
rmeddis@0 279 nm=UTIL_paramsList(whos);
rmeddis@0 280 for i=1:length(nm)
rmeddis@0 281 % eval(['UTIL_showStruct(' nm{i} ', ''' nm{i} ''')'])
rmeddis@0 282 if ~strcmp(nm(i), 'method')
rmeddis@0 283 eval(['UTIL_showStructureSummary(' nm{i} ', ''' nm{i} ''', 10)'])
rmeddis@0 284 end
rmeddis@0 285 end
rmeddis@0 286 end
rmeddis@0 287
rmeddis@0 288
rmeddis@0 289
rmeddis@0 290 % ********************************************************************** comparison data
rmeddis@0 291 % store individual data here for display on the multiThreshold GUI (if used)
rmeddis@0 292 % the final value in each vector is an identifier (BF or duration))
rmeddis@0 293 if isstruct(experiment)
rmeddis@0 294 switch experiment.paradigm
rmeddis@0 295 case {'IFMC','IFMC_8ms'}
rmeddis@0 296 % based on MPa
rmeddis@0 297 comparisonData=[
rmeddis@0 298 66 51 49 48 46 45 54 250;
rmeddis@0 299 60 54 46 42 39 49 65 500;
rmeddis@0 300 64 51 38 32 33 59 75 1000;
rmeddis@0 301 59 51 36 30 41 81 93 2000;
rmeddis@0 302 71 63 53 44 36 76 95 4000;
rmeddis@0 303 70 64 43 35 35 66 88 6000;
rmeddis@0 304 110 110 110 110 110 110 110 8000;
rmeddis@0 305 ];
rmeddis@0 306 if length(BFlist)==1 && ~isempty(comparisonData)
rmeddis@0 307 availableFrequencies=comparisonData(:,end)';
rmeddis@0 308 findRow= find(BFlist==availableFrequencies);
rmeddis@0 309 if ~isempty (findRow)
rmeddis@0 310 experiment.comparisonData=comparisonData(findRow,:);
rmeddis@0 311 end
rmeddis@0 312 end
rmeddis@0 313
rmeddis@0 314 case {'TMC','TMC_8ms'}
rmeddis@0 315 % based on MPa
rmeddis@0 316 comparisonData=[
rmeddis@0 317 48 58 63 68 75 80 85 92 99 250;
rmeddis@0 318 33 39 40 49 52 61 64 77 79 500;
rmeddis@0 319 39 42 50 81 83 92 96 97 110 1000;
rmeddis@0 320 24 26 32 37 46 51 59 71 78 2000;
rmeddis@0 321 65 68 77 85 91 93 110 110 110 4000;
rmeddis@0 322 20 19 26 44 80 95 96 110 110 6000;
rmeddis@0 323 ];
rmeddis@0 324 if length(BFlist)==1 && ~isempty(comparisonData)
rmeddis@0 325 availableFrequencies=comparisonData(:,end)';
rmeddis@0 326 findRow= find(BFlist==availableFrequencies);
rmeddis@0 327 if ~isempty (findRow)
rmeddis@0 328 experiment.comparisonData=comparisonData(findRow,:);
rmeddis@0 329 end
rmeddis@0 330 end
rmeddis@0 331
rmeddis@0 332 case { 'absThreshold', 'absThreshold_8'}
rmeddis@0 333 % MPa thresholds
rmeddis@0 334 experiment.comparisonData=[
rmeddis@0 335 32 26 16 18 22 22 0.008;
rmeddis@0 336 16 13 6 9 15 11 0.500
rmeddis@0 337 ];
rmeddis@0 338
rmeddis@0 339
rmeddis@0 340 otherwise
rmeddis@0 341 experiment.comparisonData=[];
rmeddis@0 342 end
rmeddis@0 343 end
rmeddis@0 344
rmeddis@0 345