rmeddis@10
|
1 function method=MAPparamsEndo ...
|
rmeddis@10
|
2 (BFlist, sampleRate, showParams)
|
rmeddis@10
|
3 % MAPparams<> establishes a complete set of MAP parameters
|
rmeddis@10
|
4 % Parameter file names must be of the form <MAPparams> <name>
|
rmeddis@10
|
5 %
|
rmeddis@10
|
6 % input arguments
|
rmeddis@10
|
7 % BFlist (optional) specifies the desired list of channel BFs
|
rmeddis@10
|
8 % otherwise defaults set below
|
rmeddis@10
|
9 % sampleRate (optional), default is 50000.
|
rmeddis@10
|
10 % showParams (optional) =1 prints out the complete set of parameters
|
rmeddis@10
|
11 % output argument
|
rmeddis@10
|
12 % method passes a miscelleny of values
|
rmeddis@10
|
13
|
rmeddis@10
|
14 global inputStimulusParams OMEParams DRNLParams
|
rmeddis@10
|
15 global IHC_VResp_VivoParams IHCpreSynapseParams AN_IHCsynapseParams
|
rmeddis@10
|
16 global MacGregorParams MacGregorMultiParams filteredSACFParams
|
rmeddis@10
|
17 global experiment % used by calls from multiThreshold only
|
rmeddis@10
|
18 global IHC_cilia_RPParams
|
rmeddis@10
|
19
|
rmeddis@10
|
20 currentFile=mfilename; % i.e. the name of this mfile
|
rmeddis@10
|
21 method.parameterSource=currentFile(10:end); % for the record
|
rmeddis@10
|
22
|
rmeddis@10
|
23 switchOffEfferent=0;
|
rmeddis@10
|
24 efferentDelay=0.010;
|
rmeddis@10
|
25 method.segmentDuration=efferentDelay;
|
rmeddis@10
|
26
|
rmeddis@10
|
27 if nargin<3, showParams=0; end
|
rmeddis@10
|
28 if nargin<2, sampleRate=50000; end
|
rmeddis@10
|
29 if nargin<1 || BFlist(1)<0 % if BFlist= -1, set BFlist to default
|
rmeddis@10
|
30 lowestBF=250; highestBF= 8000; numChannels=21;
|
rmeddis@10
|
31 % 21 chs (250-8k)includes BFs at 250 500 1000 2000 4000 8000
|
rmeddis@10
|
32 BFlist=round(logspace(log10(lowestBF),log10(highestBF),numChannels));
|
rmeddis@10
|
33 end
|
rmeddis@10
|
34 % BFlist=1000;
|
rmeddis@10
|
35
|
rmeddis@10
|
36 % preserve for backward campatibility
|
rmeddis@10
|
37 method.nonlinCF=BFlist;
|
rmeddis@10
|
38 method.dt=1/sampleRate;
|
rmeddis@10
|
39
|
rmeddis@10
|
40 %%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
rmeddis@10
|
41 % set model parameters
|
rmeddis@10
|
42 %%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
rmeddis@10
|
43
|
rmeddis@10
|
44 %% #1 inputStimulus
|
rmeddis@10
|
45 inputStimulusParams=[];
|
rmeddis@10
|
46 inputStimulusParams.sampleRate= sampleRate;
|
rmeddis@10
|
47
|
rmeddis@10
|
48 %% #2 outerMiddleEar
|
rmeddis@10
|
49 OMEParams=[]; % clear the structure first
|
rmeddis@10
|
50 % outer ear resonances band pass filter [gain lp order hp]
|
rmeddis@10
|
51 OMEParams.externalResonanceFilters= [ 10 1 1000 4000];
|
rmeddis@10
|
52
|
rmeddis@10
|
53 % highpass stapes filter
|
rmeddis@10
|
54 % Huber gives 2e-9 m at 80 dB and 1 kHz (2e-13 at 0 dB SPL)
|
rmeddis@10
|
55 OMEParams.OMEstapesLPcutoff= 1000;
|
rmeddis@10
|
56 OMEParams.stapesScalar= 45e-9;
|
rmeddis@10
|
57
|
rmeddis@10
|
58 % Acoustic reflex: maximum attenuation should be around 25 dB Price (1966)
|
rmeddis@10
|
59 % i.e. a minimum ratio of 0.056.
|
rmeddis@10
|
60 if ~switchOffEfferent
|
rmeddis@10
|
61 % 'spikes' model: AR based on brainstem spiking activity (LSR)
|
rmeddis@10
|
62 OMEParams.rateToAttenuationFactor=0.003; % * N(all ICspikes)
|
rmeddis@10
|
63 % OMEParams.rateToAttenuationFactor=0; % * N(all ICspikes)
|
rmeddis@10
|
64 % 'probability model': Ar based on An firing probabilities (LSR)
|
rmeddis@10
|
65 OMEParams.rateToAttenuationFactorProb=0.005;% * N(all ANrates)
|
rmeddis@10
|
66 % OMEParams.rateToAttenuationFactorProb=0;% * N(all ANrates)
|
rmeddis@10
|
67 else
|
rmeddis@10
|
68 OMEParams.rateToAttenuationFactor=0; % 0= off
|
rmeddis@10
|
69 OMEParams.rateToAttenuationFactorProb=0; % 0= off
|
rmeddis@10
|
70 end
|
rmeddis@10
|
71 % asymptote should be around 100-200 ms
|
rmeddis@10
|
72 OMEParams.ARtau=.05; % AR smoothing function
|
rmeddis@10
|
73 % delay must be longer than the segment length
|
rmeddis@10
|
74 OMEParams.ARdelay=efferentDelay; %Moss gives 8.5 ms latency
|
rmeddis@10
|
75 OMEParams.ARrateThreshold=0;
|
rmeddis@10
|
76
|
rmeddis@10
|
77 %% #3 DRNL
|
rmeddis@10
|
78 DRNLParams=[]; % clear the structure first
|
rmeddis@10
|
79 DRNLParams.BFlist=BFlist;
|
rmeddis@10
|
80
|
rmeddis@10
|
81 % DRNL nonlinear path
|
rmeddis@10
|
82 DRNLParams.a=3e4; % nonlinear path gain (below compression threshold)
|
rmeddis@10
|
83 % DRNLParams.a=3e2; % DRNL.a=0 means no OHCs (no nonlinear path)
|
rmeddis@10
|
84
|
rmeddis@10
|
85 DRNLParams.b=8e-6; % *compression threshold raised compression
|
rmeddis@10
|
86 % DRNLParams.b=1; % b=1 means no compression
|
rmeddis@10
|
87
|
rmeddis@10
|
88 DRNLParams.c=0.2; % compression exponent
|
rmeddis@10
|
89 % nonlinear filters
|
rmeddis@10
|
90 DRNLParams.nonlinCFs=BFlist;
|
rmeddis@10
|
91 DRNLParams.nonlinOrder= 3; % order of nonlinear gammatone filters
|
rmeddis@10
|
92 p=0.2895; q=170; % human (% p=0.14; q=366; % cat)
|
rmeddis@10
|
93 DRNLParams.nlBWs= p * BFlist + q;
|
rmeddis@10
|
94 DRNLParams.p=p; DRNLParams.q=q; % save p and q for printing only
|
rmeddis@10
|
95
|
rmeddis@10
|
96 % DRNL linear path:
|
rmeddis@10
|
97 DRNLParams.g=100; % linear path gain factor
|
rmeddis@10
|
98 % linCF is not necessarily the same as nonlinCF
|
rmeddis@10
|
99 minLinCF=153.13; coeffLinCF=0.7341; % linCF>nonlinBF for BF < 1 kHz
|
rmeddis@10
|
100 DRNLParams.linCFs=minLinCF+coeffLinCF*BFlist;
|
rmeddis@10
|
101 DRNLParams.linOrder= 3; % order of linear gammatone filters
|
rmeddis@10
|
102 minLinBW=100; coeffLinBW=0.6531;
|
rmeddis@10
|
103 DRNLParams.linBWs=minLinBW + coeffLinBW*BFlist; % bandwidths of linear filters
|
rmeddis@10
|
104
|
rmeddis@10
|
105 % DRNL MOC efferents
|
rmeddis@10
|
106 DRNLParams.MOCdelay = efferentDelay; % must be < segment length!
|
rmeddis@10
|
107 if ~switchOffEfferent
|
rmeddis@10
|
108 % 'spikes' model: MOC based on brainstem spiking activity (HSR)
|
rmeddis@10
|
109 DRNLParams.rateToAttenuationFactor = .009; % strength of MOC
|
rmeddis@10
|
110 DRNLParams.rateToAttenuationFactor = .009; % strength of MOC
|
rmeddis@10
|
111 % DRNLParams.rateToAttenuationFactor = 0; % strength of MOC
|
rmeddis@10
|
112
|
rmeddis@10
|
113 % 'spikes' model: MOC based on brainstem spiking activity (HSR)
|
rmeddis@10
|
114 DRNLParams.rateToAttenuationFactorProb = .002; % strength of MOC
|
rmeddis@10
|
115 else
|
rmeddis@10
|
116 DRNLParams.rateToAttenuationFactor = 0; % 0 = MOC off (probability)
|
rmeddis@10
|
117 DRNLParams.rateToAttenuationFactorProb = 0; % 0 = MOC off (spikes)
|
rmeddis@10
|
118 end
|
rmeddis@10
|
119 DRNLParams.MOCtau =.03; % smoothing for MOC
|
rmeddis@10
|
120 DRNLParams.MOCrateThreshold =50; % set to AN rate threshold
|
rmeddis@10
|
121
|
rmeddis@10
|
122
|
rmeddis@10
|
123 %% #4 IHC_cilia_RPParams
|
rmeddis@10
|
124
|
rmeddis@10
|
125 IHC_cilia_RPParams.tc= 0.0003; % 0.0003 filter time simulates viscocity
|
rmeddis@10
|
126 % IHC_cilia_RPParams.tc= 0.0005; % 0.0003 filter time simulates viscocity
|
rmeddis@10
|
127 IHC_cilia_RPParams.C= 0.05; % 0.1 scalar (C_cilia )
|
rmeddis@10
|
128 IHC_cilia_RPParams.u0= 5e-9;
|
rmeddis@10
|
129 IHC_cilia_RPParams.s0= 30e-9;
|
rmeddis@10
|
130 IHC_cilia_RPParams.u1= 1e-9;
|
rmeddis@10
|
131 IHC_cilia_RPParams.s1= 1e-9;
|
rmeddis@10
|
132
|
rmeddis@15
|
133 IHC_cilia_RPParams.Gmax= 5e-9; % 2.5e-9 maximum conductance (Siemens)
|
rmeddis@15
|
134 IHC_cilia_RPParams.Ga= 1e-9; % 4.3e-9 fixed apical membrane conductance
|
rmeddis@10
|
135
|
rmeddis@10
|
136 % #5 IHC_RP
|
rmeddis@10
|
137 IHC_cilia_RPParams.Cab= 4e-012; % IHC capacitance (F)
|
rmeddis@10
|
138 IHC_cilia_RPParams.Cab= 1e-012; % IHC capacitance (F)
|
rmeddis@15
|
139 IHC_cilia_RPParams.Et= 0.100; % endocochlear potential (V)
|
rmeddis@16
|
140 IHC_cilia_RPParams.Et= 0.065; % endocochlear potential (V)
|
rmeddis@10
|
141
|
rmeddis@10
|
142 IHC_cilia_RPParams.Gk= 2e-008; % 1e-8 potassium conductance (S)
|
rmeddis@10
|
143 IHC_cilia_RPParams.Ek= -0.08; % -0.084 K equilibrium potential
|
rmeddis@10
|
144 IHC_cilia_RPParams.Rpc= 0.04; % combined resistances
|
rmeddis@10
|
145
|
rmeddis@10
|
146
|
rmeddis@10
|
147 %% #5 IHCpreSynapse
|
rmeddis@10
|
148 IHCpreSynapseParams=[];
|
rmeddis@10
|
149 IHCpreSynapseParams.GmaxCa= 14e-9;% maximum calcium conductance
|
rmeddis@10
|
150 IHCpreSynapseParams.GmaxCa= 12e-9;% maximum calcium conductance
|
rmeddis@10
|
151 IHCpreSynapseParams.ECa= 0.066; % calcium equilibrium potential
|
rmeddis@10
|
152 IHCpreSynapseParams.beta= 400; % determine Ca channel opening
|
rmeddis@10
|
153 IHCpreSynapseParams.gamma= 100; % determine Ca channel opening
|
rmeddis@10
|
154 IHCpreSynapseParams.tauM= 0.00005; % membrane time constant ?0.1ms
|
rmeddis@10
|
155 IHCpreSynapseParams.power= 3;
|
rmeddis@10
|
156 % reminder: changing z has a strong effect on HF thresholds (like Et)
|
rmeddis@10
|
157 IHCpreSynapseParams.z= 2e42; % scalar Ca -> vesicle release rate
|
rmeddis@10
|
158
|
rmeddis@10
|
159 LSRtauCa=50e-6; HSRtauCa=85e-6; % seconds
|
rmeddis@10
|
160 % LSRtauCa=35e-6; HSRtauCa=70e-6; % seconds
|
rmeddis@10
|
161 IHCpreSynapseParams.tauCa= [LSRtauCa HSRtauCa]; %LSR and HSR fiber
|
rmeddis@10
|
162
|
rmeddis@10
|
163 %% #6 AN_IHCsynapse
|
rmeddis@10
|
164 % c=kym/(y(l+r)+kl) (spontaneous rate)
|
rmeddis@10
|
165 % c=(approx) ym/l (saturated rate)
|
rmeddis@10
|
166 AN_IHCsynapseParams=[]; % clear the structure first
|
rmeddis@10
|
167 AN_IHCsynapseParams.M= 12; % maximum vesicles at synapse
|
rmeddis@10
|
168 AN_IHCsynapseParams.y= 4; % depleted vesicle replacement rate
|
rmeddis@10
|
169 AN_IHCsynapseParams.y= 6; % depleted vesicle replacement rate
|
rmeddis@10
|
170
|
rmeddis@10
|
171 AN_IHCsynapseParams.x= 30; % replenishment from re-uptake store
|
rmeddis@10
|
172 AN_IHCsynapseParams.x= 60; % replenishment from re-uptake store
|
rmeddis@10
|
173
|
rmeddis@10
|
174 % reduce l to increase saturated rate
|
rmeddis@10
|
175 AN_IHCsynapseParams.l= 100; % *loss rate of vesicles from the cleft
|
rmeddis@10
|
176 AN_IHCsynapseParams.l= 250; % *loss rate of vesicles from the cleft
|
rmeddis@10
|
177
|
rmeddis@10
|
178 AN_IHCsynapseParams.r= 500; % *reuptake rate from cleft into cell
|
rmeddis@10
|
179 % AN_IHCsynapseParams.r= 300; % *reuptake rate from cleft into cell
|
rmeddis@10
|
180
|
rmeddis@10
|
181 AN_IHCsynapseParams.refractory_period= 0.00075;
|
rmeddis@10
|
182 % number of AN fibers at each BF (used only for spike generation)
|
rmeddis@10
|
183 AN_IHCsynapseParams.numFibers= 100;
|
rmeddis@10
|
184 AN_IHCsynapseParams.TWdelay=0.004; % ?delay before stimulus first spike
|
rmeddis@10
|
185
|
rmeddis@15
|
186 AN_IHCsynapseParams.ANspeedUpFactor=5; % longer epochs for computing spikes.
|
rmeddis@15
|
187
|
rmeddis@10
|
188 %% #7 MacGregorMulti (first order brainstem neurons)
|
rmeddis@10
|
189 MacGregorMultiParams=[];
|
rmeddis@10
|
190 MacGregorMultiType='chopper'; % MacGregorMultiType='primary-like'; %choose
|
rmeddis@10
|
191 switch MacGregorMultiType
|
rmeddis@10
|
192 case 'primary-like'
|
rmeddis@10
|
193 MacGregorMultiParams.nNeuronsPerBF= 10; % N neurons per BF
|
rmeddis@10
|
194 MacGregorMultiParams.type = 'primary-like cell';
|
rmeddis@10
|
195 MacGregorMultiParams.fibersPerNeuron=4; % N input fibers
|
rmeddis@10
|
196 MacGregorMultiParams.dendriteLPfreq=200; % dendritic filter
|
rmeddis@10
|
197 MacGregorMultiParams.currentPerSpike=0.11e-6; % (A) per spike
|
rmeddis@10
|
198 MacGregorMultiParams.Cap=4.55e-9; % cell capacitance (Siemens)
|
rmeddis@10
|
199 MacGregorMultiParams.tauM=5e-4; % membrane time constant (s)
|
rmeddis@10
|
200 MacGregorMultiParams.Ek=-0.01; % K+ eq. potential (V)
|
rmeddis@10
|
201 MacGregorMultiParams.dGkSpike=3.64e-5; % K+ cond.shift on spike,S
|
rmeddis@10
|
202 MacGregorMultiParams.tauGk= 0.0012; % K+ conductance tau (s)
|
rmeddis@10
|
203 MacGregorMultiParams.Th0= 0.01; % equilibrium threshold (V)
|
rmeddis@10
|
204 MacGregorMultiParams.c= 0.01; % threshold shift on spike, (V)
|
rmeddis@10
|
205 MacGregorMultiParams.tauTh= 0.015; % variable threshold tau
|
rmeddis@10
|
206 MacGregorMultiParams.Er=-0.06; % resting potential (V)
|
rmeddis@10
|
207 MacGregorMultiParams.Eb=0.06; % spike height (V)
|
rmeddis@10
|
208
|
rmeddis@10
|
209 case 'chopper'
|
rmeddis@10
|
210 MacGregorMultiParams.nNeuronsPerBF= 10; % N neurons per BF
|
rmeddis@10
|
211 MacGregorMultiParams.type = 'chopper cell';
|
rmeddis@10
|
212 MacGregorMultiParams.fibersPerNeuron=10; % N input fibers
|
rmeddis@10
|
213 % MacGregorMultiParams.fibersPerNeuron=6; % N input fibers
|
rmeddis@10
|
214
|
rmeddis@10
|
215 MacGregorMultiParams.dendriteLPfreq=50; % dendritic filter
|
rmeddis@10
|
216 MacGregorMultiParams.currentPerSpike=35e-9; % *per spike
|
rmeddis@15
|
217 MacGregorMultiParams.currentPerSpike=30e-9; % *per spike
|
rmeddis@10
|
218
|
rmeddis@10
|
219 MacGregorMultiParams.Cap=1.67e-8; % ??cell capacitance (Siemens)
|
rmeddis@10
|
220 MacGregorMultiParams.tauM=0.002; % membrane time constant (s)
|
rmeddis@10
|
221 MacGregorMultiParams.Ek=-0.01; % K+ eq. potential (V)
|
rmeddis@10
|
222 MacGregorMultiParams.dGkSpike=1.33e-4; % K+ cond.shift on spike,S
|
rmeddis@15
|
223 MacGregorMultiParams.tauGk= 0.0005;% K+ conductance tau (s)
|
rmeddis@10
|
224 MacGregorMultiParams.Th0= 0.01; % equilibrium threshold (V)
|
rmeddis@10
|
225 MacGregorMultiParams.c= 0; % threshold shift on spike, (V)
|
rmeddis@10
|
226 MacGregorMultiParams.tauTh= 0.02; % variable threshold tau
|
rmeddis@10
|
227 MacGregorMultiParams.Er=-0.06; % resting potential (V)
|
rmeddis@10
|
228 MacGregorMultiParams.Eb=0.06; % spike height (V)
|
rmeddis@10
|
229 MacGregorMultiParams.PSTHbinWidth= 1e-4;
|
rmeddis@10
|
230 end
|
rmeddis@10
|
231
|
rmeddis@10
|
232 %% #8 MacGregor (second-order neuron). Only one per channel
|
rmeddis@10
|
233 MacGregorParams=[]; % clear the structure first
|
rmeddis@10
|
234 MacGregorParams.type = 'chopper cell';
|
rmeddis@10
|
235 MacGregorParams.fibersPerNeuron=10; % N input fibers
|
rmeddis@10
|
236 MacGregorParams.dendriteLPfreq=100; % dendritic filter
|
rmeddis@10
|
237 MacGregorParams.currentPerSpike=120e-9;% *(A) per spike
|
rmeddis@15
|
238 MacGregorParams.currentPerSpike=30e-9;% *(A) per spike
|
rmeddis@10
|
239
|
rmeddis@10
|
240 MacGregorParams.Cap=16.7e-9; % cell capacitance (Siemens)
|
rmeddis@10
|
241 MacGregorParams.tauM=0.002; % membrane time constant (s)
|
rmeddis@10
|
242 MacGregorParams.Ek=-0.01; % K+ eq. potential (V)
|
rmeddis@10
|
243 MacGregorParams.dGkSpike=1.33e-4; % K+ cond.shift on spike,S
|
rmeddis@15
|
244 MacGregorParams.tauGk= 0.0005; % K+ conductance tau (s)
|
rmeddis@10
|
245 MacGregorParams.Th0= 0.01; % equilibrium threshold (V)
|
rmeddis@10
|
246 MacGregorParams.c= 0; % threshold shift on spike, (V)
|
rmeddis@10
|
247 MacGregorParams.tauTh= 0.02; % variable threshold tau
|
rmeddis@10
|
248 MacGregorParams.Er=-0.06; % resting potential (V)
|
rmeddis@10
|
249 MacGregorParams.Eb=0.06; % spike height (V)
|
rmeddis@10
|
250 MacGregorParams.debugging=0; % (special)
|
rmeddis@10
|
251 % wideband accepts input from all channels (of same fiber type)
|
rmeddis@10
|
252 % use wideband to create inhibitory units
|
rmeddis@10
|
253 MacGregorParams.wideband=0; % special for wideband units
|
rmeddis@10
|
254 % MacGregorParams.saveAllData=0;
|
rmeddis@10
|
255
|
rmeddis@10
|
256 %% #9 filteredSACF
|
rmeddis@10
|
257 minPitch= 300; maxPitch= 3000; numPitches=60; % specify lags
|
rmeddis@10
|
258 pitches=100*log10(logspace(minPitch/100, maxPitch/100, numPitches));
|
rmeddis@10
|
259 filteredSACFParams.lags=1./pitches; % autocorrelation lags vector
|
rmeddis@10
|
260 filteredSACFParams.acfTau= .003; % time constant of running ACF
|
rmeddis@10
|
261 filteredSACFParams.lambda= 0.12; % slower filter to smooth ACF
|
rmeddis@10
|
262 filteredSACFParams.plotFilteredSACF=1; % 0 plots unfiltered ACFs
|
rmeddis@10
|
263 filteredSACFParams.plotACFs=0; % special plot (see code)
|
rmeddis@10
|
264 % filteredSACFParams.usePressnitzer=0; % attenuates ACF at long lags
|
rmeddis@10
|
265 filteredSACFParams.lagsProcedure= 'useAllLags';
|
rmeddis@10
|
266 % filteredSACFParams.lagsProcedure= 'useBernsteinLagWeights';
|
rmeddis@10
|
267 % filteredSACFParams.lagsProcedure= 'omitShortLags';
|
rmeddis@10
|
268 filteredSACFParams.criterionForOmittingLags=3;
|
rmeddis@10
|
269
|
rmeddis@10
|
270 % checks
|
rmeddis@10
|
271 if AN_IHCsynapseParams.numFibers<MacGregorMultiParams.fibersPerNeuron
|
rmeddis@10
|
272 error('MacGregorMulti: too few input fibers for input to MacG unit')
|
rmeddis@10
|
273 end
|
rmeddis@10
|
274
|
rmeddis@10
|
275
|
rmeddis@10
|
276 %% write all parameters to the command window
|
rmeddis@10
|
277 % showParams is currently set at the top of htis function
|
rmeddis@10
|
278 if showParams
|
rmeddis@10
|
279 fprintf('\n %%%%%%%%\n')
|
rmeddis@10
|
280 fprintf('\n%s\n', method.parameterSource)
|
rmeddis@10
|
281 fprintf('\n')
|
rmeddis@10
|
282 nm=UTIL_paramsList(whos);
|
rmeddis@10
|
283 for i=1:length(nm)
|
rmeddis@10
|
284 % eval(['UTIL_showStruct(' nm{i} ', ''' nm{i} ''')'])
|
rmeddis@10
|
285 if ~strcmp(nm(i), 'method')
|
rmeddis@10
|
286 eval(['UTIL_showStructureSummary(' nm{i} ', ''' nm{i} ''', 10)'])
|
rmeddis@10
|
287 end
|
rmeddis@10
|
288 end
|
rmeddis@10
|
289 end
|
rmeddis@10
|
290
|
rmeddis@10
|
291
|
rmeddis@10
|
292
|
rmeddis@10
|
293 % ********************************************************************** comparison data
|
rmeddis@10
|
294 % store individual data here for display on the multiThreshold GUI (if used)
|
rmeddis@10
|
295 % the final value in each vector is an identifier (BF or duration))
|
rmeddis@10
|
296 if isstruct(experiment)
|
rmeddis@10
|
297 switch experiment.paradigm
|
rmeddis@10
|
298 case {'IFMC','IFMC_8ms'}
|
rmeddis@10
|
299 % based on MPa
|
rmeddis@10
|
300 comparisonData=[
|
rmeddis@10
|
301 66 51 49 48 46 45 54 250;
|
rmeddis@10
|
302 60 54 46 42 39 49 65 500;
|
rmeddis@10
|
303 64 51 38 32 33 59 75 1000;
|
rmeddis@10
|
304 59 51 36 30 41 81 93 2000;
|
rmeddis@10
|
305 71 63 53 44 36 76 95 4000;
|
rmeddis@10
|
306 70 64 43 35 35 66 88 6000;
|
rmeddis@10
|
307 110 110 110 110 110 110 110 8000;
|
rmeddis@10
|
308 ];
|
rmeddis@10
|
309 if length(BFlist)==1 && ~isempty(comparisonData)
|
rmeddis@10
|
310 availableFrequencies=comparisonData(:,end)';
|
rmeddis@10
|
311 findRow= find(BFlist==availableFrequencies);
|
rmeddis@10
|
312 if ~isempty (findRow)
|
rmeddis@10
|
313 experiment.comparisonData=comparisonData(findRow,:);
|
rmeddis@10
|
314 end
|
rmeddis@10
|
315 end
|
rmeddis@10
|
316
|
rmeddis@10
|
317 case {'TMC','TMC_8ms'}
|
rmeddis@10
|
318 % based on MPa
|
rmeddis@10
|
319 comparisonData=[
|
rmeddis@10
|
320 48 58 63 68 75 80 85 92 99 250;
|
rmeddis@10
|
321 33 39 40 49 52 61 64 77 79 500;
|
rmeddis@10
|
322 39 42 50 81 83 92 96 97 110 1000;
|
rmeddis@10
|
323 24 26 32 37 46 51 59 71 78 2000;
|
rmeddis@10
|
324 65 68 77 85 91 93 110 110 110 4000;
|
rmeddis@10
|
325 20 19 26 44 80 95 96 110 110 6000;
|
rmeddis@10
|
326 ];
|
rmeddis@10
|
327 if length(BFlist)==1 && ~isempty(comparisonData)
|
rmeddis@10
|
328 availableFrequencies=comparisonData(:,end)';
|
rmeddis@10
|
329 findRow= find(BFlist==availableFrequencies);
|
rmeddis@10
|
330 if ~isempty (findRow)
|
rmeddis@10
|
331 experiment.comparisonData=comparisonData(findRow,:);
|
rmeddis@10
|
332 end
|
rmeddis@10
|
333 end
|
rmeddis@10
|
334
|
rmeddis@10
|
335 case { 'absThreshold', 'absThreshold_8'}
|
rmeddis@10
|
336 % MPa thresholds
|
rmeddis@10
|
337 experiment.comparisonData=[
|
rmeddis@10
|
338 32 26 16 18 22 22 0.008;
|
rmeddis@10
|
339 16 13 6 9 15 11 0.500
|
rmeddis@10
|
340 ];
|
rmeddis@10
|
341
|
rmeddis@10
|
342
|
rmeddis@10
|
343 otherwise
|
rmeddis@10
|
344 experiment.comparisonData=[];
|
rmeddis@10
|
345 end
|
rmeddis@10
|
346 end
|
rmeddis@10
|
347
|
rmeddis@10
|
348
|