annotate src/samer/maths/opt/UnconstrainedConjGrad.java @ 8:5e3cbbf173aa tip

Reorganise some more
author samer
date Fri, 05 Apr 2019 22:41:58 +0100
parents bf79fb79ee13
children
rev   line source
samer@0 1 /*
samer@0 2 * Copyright (c) 2000, Samer Abdallah, King's College London.
samer@0 3 * All rights reserved.
samer@0 4 *
samer@0 5 * This software is provided AS iS and WITHOUT ANY WARRANTY;
samer@0 6 * without even the implied warranty of MERCHANTABILITY or
samer@0 7 * FITNESS FOR A PARTICULAR PURPOSE.
samer@0 8 */
samer@0 9
samer@0 10 package samer.maths.opt;
samer@0 11 import samer.maths.*;
samer@0 12 import samer.core.*;
samer@0 13 import samer.core.types.*;
samer@0 14 import samer.core.util.heavy.*;
samer@0 15
samer@0 16 /**
samer@0 17 unconstrained minimiser for smooth functions:
samer@0 18 - ConjugateGradient
samer@0 19 - OR Quasi-newton (using GillMurray updates)
samer@0 20
samer@0 21 - Safeguarded cubic interpolation line search using gradients
samer@0 22 */
samer@0 23
samer@0 24
samer@0 25 public class UnconstrainedConjGrad extends MinimiserBase
samer@0 26 {
samer@0 27 ConjGrad dir;
samer@0 28 double guess;
samer@0 29
samer@0 30 public UnconstrainedConjGrad(Vec v, Functionx f)
samer@0 31 {
samer@0 32 super(v,f);
samer@0 33 dir = new ConjGrad(this);
samer@0 34 add(new VParameter( "hessian", new DoubleModel() {
samer@0 35 public void set(double h) { dir.invhess=1/h; }
samer@0 36 public double get() { return 1/dir.invhess; }
samer@0 37 } ));
samer@0 38 }
samer@0 39
samer@0 40 public void stopping() {}
samer@0 41 public void run()
samer@0 42 {
samer@0 43 double beta;
samer@0 44 int i, maxiter=getMaxiter();
samer@0 45 boolean triedSteepest=false;
samer@0 46
samer@0 47 // dir.resetHessian(1);
samer@0 48 evaluate();
samer@0 49 dir.init();
samer@0 50 setSlope();
samer@0 51 // beta = vs.beta.value;
samer@0 52 beta = initialStep();
samer@0 53 sig1.off();
samer@0 54
samer@0 55 for (i=0; i<maxiter; i++) {
samer@0 56
samer@0 57 step(beta);
samer@0 58 lstest.init();
samer@0 59 ls.run(lstest); // line search
samer@0 60 lsiters.next(lstest.count);
samer@0 61 steplength.next(alpha);
samer@0 62
samer@0 63 if (lstest.tiny && (P2.f>=P1.f)) {
samer@0 64 // tiny step was no good
samer@0 65 sig1.on();
samer@0 66 sig2.off();
samer@0 67 if (gconv.isSatisfied(P1.g,this)) break;
samer@0 68 if (triedSteepest=true) break;
samer@0 69 sig2.on();
samer@0 70
samer@0 71 beta = this.beta.value;
samer@0 72
samer@0 73
samer@0 74 dir.init(); // reset to steepest descent
samer@0 75 setSlope();
samer@0 76 triedSteepest=true;
samer@0 77 continue;
samer@0 78 }
samer@0 79
samer@0 80 if (xfconv.isSatisfied(this)) { break; }
samer@0 81
samer@0 82 beta = nextStep();
samer@0 83 // beta = vs.beta.value;
samer@0 84 dir.update();
samer@0 85 move();
samer@0 86 perIteration();
samer@0 87 }
samer@0 88
samer@0 89 perOptimisation(i); // finishing off stuff
samer@0 90 }
samer@0 91 }