annotate src/samer/models/AlignedGaussian.java @ 3:15b93db27c04

Get StreamSource to compile, update args for demo
author samer
date Fri, 05 Apr 2019 17:00:18 +0100
parents bf79fb79ee13
children
rev   line source
samer@0 1 /*
samer@0 2 * Copyright (c) 2002, Samer Abdallah, King's College London.
samer@0 3 * All rights reserved.
samer@0 4 *
samer@0 5 * This software is provided AS iS and WITHOUT ANY WARRANTY;
samer@0 6 * without even the implied warranty of MERCHANTABILITY or
samer@0 7 * FITNESS FOR A PARTICULAR PURPOSE.
samer@0 8 */
samer@0 9
samer@0 10 package samer.models;
samer@0 11
samer@0 12 import samer.core.*;
samer@0 13 import samer.core.types.*;
samer@0 14 import samer.maths.*;
samer@0 15 import samer.maths.opt.*;
samer@0 16 import samer.tools.*;
samer@0 17
samer@0 18 /**
samer@0 19 Differential scaler: scales and offsets each element of a vector
samer@0 20 independently aiming to match a given prior model. This is
samer@0 21 like ICA using a diagonal weight matrix, with a 'zero-mean'
samer@0 22 normalisation built in, though it doesn't actually the mean to
samer@0 23 do this, but some statistic based on the prior model.
samer@0 24 */
samer@0 25
samer@0 26 public class AlignedGaussian extends AnonymousTask implements Model
samer@0 27 {
samer@0 28 private int n;
samer@0 29 private Vec x;
samer@0 30 private VVector s;
samer@0 31 private VVector w; // vector of multipliers
samer@0 32 private VDouble E;
samer@0 33 private VDouble logA;
samer@0 34
samer@0 35 double [] _x, _s, _g, _w, _m, phi;
samer@0 36
samer@0 37 public AlignedGaussian( Vec input) { this(input.size()); setInput(input); }
samer@0 38 public AlignedGaussian( int N)
samer@0 39 {
samer@0 40 n = N;
samer@0 41
samer@0 42 x = null;
samer@0 43 w = new VVector("w",n); w.addSaver();
samer@0 44 s = new VVector("s",n);
samer@0 45 E = new VDouble("E");
samer@0 46 logA = new VDouble("log|A|",0);
samer@0 47
samer@0 48
samer@0 49 _s = s.array();
samer@0 50 _w = w.array();
samer@0 51 _g = new double[n];
samer@0 52 phi = null;
samer@0 53 reset();
samer@0 54 }
samer@0 55
samer@0 56 public int getSize() { return n; }
samer@0 57 public VVector output() { return s; }
samer@0 58 public VVector weights() { return w; }
samer@0 59 public void setInput(Vec in) { x=in; _x=x.array(); }
samer@0 60 public void reset() { reset(1.0); }
samer@0 61 public void reset(double k) {
samer@0 62 Mathx.setAll(_w,k); w.changed();
samer@0 63 logA.set(-sumlog(_w));
samer@0 64 }
samer@0 65
samer@0 66 public String toString() { return "AlignedGaussian("+x+")"; }
samer@0 67 private static double sumlog(double [] x) {
samer@0 68 double S=0;
samer@0 69 for (int i=0; i<x.length; i++) S += Math.log(x[i]);
samer@0 70 return S;
samer@0 71 }
samer@0 72
samer@0 73 public void dispose()
samer@0 74 {
samer@0 75 logA.dispose();
samer@0 76 w.dispose();
samer@0 77 s.dispose();
samer@0 78 super.dispose();
samer@0 79 }
samer@0 80
samer@0 81 public void infer() { Mathx.mul(_s,_x,_w); s.changed(); }
samer@0 82 public void compute() {
samer@0 83 Mathx.mul(_g,_s,_w);
samer@0 84 E.set(0.5*Mathx.norm2(_s)+logA.value);
samer@0 85 }
samer@0 86
samer@0 87 public double getEnergy() { return E.value; }
samer@0 88 public double [] getGradient() { return _g; }
samer@0 89
samer@0 90 public Functionx functionx() {
samer@0 91 return new Functionx() {
samer@0 92 double [] s=new double[n];
samer@0 93
samer@0 94 public void dispose() {}
samer@0 95 public void evaluate(Datum P) { P.f=evaluate(P.x,P.g); }
samer@0 96 public double evaluate(double [] x, double [] g) {
samer@0 97 Mathx.mul(s,x,_w);
samer@0 98 Mathx.mul(g,s,_w);
samer@0 99 return 0.5*Mathx.norm2(s); // +logA.value;
samer@0 100 }
samer@0 101 };
samer@0 102 }
samer@0 103
samer@0 104 public void starting() { logA.set(-sumlog(_w)); }
samer@0 105 public void stopping() {}
samer@0 106 public void run() { infer(); compute(); }
samer@0 107 }
samer@0 108