# HG changeset patch # User Chris Cannam # Date 1443711058 -3600 # Node ID d7c216b6a84ffa4c703f157754faba236ff68b5b Pull in some FFT implementations for test diff -r 000000000000 -r d7c216b6a84f .hgsub --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/.hgsub Thu Oct 01 15:50:58 2015 +0100 @@ -0,0 +1,4 @@ +fft-test/fft.js = [git]https://github.com/JensNockert/fft.js +fft-test/timbre.js = [git]https://github.com/mohayonao/timbre.js +fft-test/jsfft = [git]https://github.com/dntj/jsfft +fft-test/dsp.js = [git]https://github.com/corbanbrook/dsp.js diff -r 000000000000 -r d7c216b6a84f .hgsubstate --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/.hgsubstate Thu Oct 01 15:50:58 2015 +0100 @@ -0,0 +1,4 @@ +a7b2e97b1385a43083e50ed6dc81d697f0e57e28 fft-test/dsp.js +dd96e6bec5464fe6b30c91ddbfdef88ea9d70bd1 fft-test/fft.js +b82257673c97f5f4bfc12fe445dcf1cf2169b46e fft-test/jsfft +7d94de567ea1d758599b1e29a11afff304d44c55 fft-test/timbre.js diff -r 000000000000 -r d7c216b6a84f fft/nayuki/fft-test.html --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/fft/nayuki/fft-test.html Thu Oct 01 15:50:58 2015 +0100 @@ -0,0 +1,180 @@ + + + +
+ ++ ++ + diff -r 000000000000 -r d7c216b6a84f fft/nayuki/fft.js --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/fft/nayuki/fft.js Thu Oct 01 15:50:58 2015 +0100 @@ -0,0 +1,215 @@ +/* + * Free FFT and convolution (JavaScript) + * + * Copyright (c) 2014 Project Nayuki + * http://www.nayuki.io/page/free-small-fft-in-multiple-languages + * + * (MIT License) + * Permission is hereby granted, free of charge, to any person obtaining a copy of + * this software and associated documentation files (the "Software"), to deal in + * the Software without restriction, including without limitation the rights to + * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of + * the Software, and to permit persons to whom the Software is furnished to do so, + * subject to the following conditions: + * - The above copyright notice and this permission notice shall be included in + * all copies or substantial portions of the Software. + * - The Software is provided "as is", without warranty of any kind, express or + * implied, including but not limited to the warranties of merchantability, + * fitness for a particular purpose and noninfringement. In no event shall the + * authors or copyright holders be liable for any claim, damages or other + * liability, whether in an action of contract, tort or otherwise, arising from, + * out of or in connection with the Software or the use or other dealings in the + * Software. + */ + +"use strict"; + + +/* + * Computes the discrete Fourier transform (DFT) of the given complex vector, storing the result back into the vector. + * The vector can have any length. This is a wrapper function. + */ +function transform(real, imag) { + if (real.length != imag.length) + throw "Mismatched lengths"; + + var n = real.length; + if (n == 0) + return; + else if ((n & (n - 1)) == 0) // Is power of 2 + transformRadix2(real, imag); + else // More complicated algorithm for arbitrary sizes + transformBluestein(real, imag); +} + + +/* + * Computes the inverse discrete Fourier transform (IDFT) of the given complex vector, storing the result back into the vector. + * The vector can have any length. This is a wrapper function. This transform does not perform scaling, so the inverse is not a true inverse. + */ +function inverseTransform(real, imag) { + transform(imag, real); +} + + +/* + * Computes the discrete Fourier transform (DFT) of the given complex vector, storing the result back into the vector. + * The vector's length must be a power of 2. Uses the Cooley-Tukey decimation-in-time radix-2 algorithm. + */ +function transformRadix2(real, imag) { + // Initialization + if (real.length != imag.length) + throw "Mismatched lengths"; + var n = real.length; + if (n == 1) // Trivial transform + return; + var levels = -1; + for (var i = 0; i < 32; i++) { + if (1 << i == n) + levels = i; // Equal to log2(n) + } + if (levels == -1) + throw "Length is not a power of 2"; + var cosTable = new Array(n / 2); + var sinTable = new Array(n / 2); + for (var i = 0; i < n / 2; i++) { + cosTable[i] = Math.cos(2 * Math.PI * i / n); + sinTable[i] = Math.sin(2 * Math.PI * i / n); + } + + // Bit-reversed addressing permutation + for (var i = 0; i < n; i++) { + var j = reverseBits(i, levels); + if (j > i) { + var temp = real[i]; + real[i] = real[j]; + real[j] = temp; + temp = imag[i]; + imag[i] = imag[j]; + imag[j] = temp; + } + } + + // Cooley-Tukey decimation-in-time radix-2 FFT + for (var size = 2; size <= n; size *= 2) { + var halfsize = size / 2; + var tablestep = n / size; + for (var i = 0; i < n; i += size) { + for (var j = i, k = 0; j < i + halfsize; j++, k += tablestep) { + var tpre = real[j+halfsize] * cosTable[k] + imag[j+halfsize] * sinTable[k]; + var tpim = -real[j+halfsize] * sinTable[k] + imag[j+halfsize] * cosTable[k]; + real[j + halfsize] = real[j] - tpre; + imag[j + halfsize] = imag[j] - tpim; + real[j] += tpre; + imag[j] += tpim; + } + } + } + + // Returns the integer whose value is the reverse of the lowest 'bits' bits of the integer 'x'. + function reverseBits(x, bits) { + var y = 0; + for (var i = 0; i < bits; i++) { + y = (y << 1) | (x & 1); + x >>>= 1; + } + return y; + } +} + + +/* + * Computes the discrete Fourier transform (DFT) of the given complex vector, storing the result back into the vector. + * The vector can have any length. This requires the convolution function, which in turn requires the radix-2 FFT function. + * Uses Bluestein's chirp z-transform algorithm. + */ +function transformBluestein(real, imag) { + // Find a power-of-2 convolution length m such that m >= n * 2 + 1 + if (real.length != imag.length) + throw "Mismatched lengths"; + var n = real.length; + var m = 1; + while (m < n * 2 + 1) + m *= 2; + + // Trignometric tables + var cosTable = new Array(n); + var sinTable = new Array(n); + for (var i = 0; i < n; i++) { + var j = i * i % (n * 2); // This is more accurate than j = i * i + cosTable[i] = Math.cos(Math.PI * j / n); + sinTable[i] = Math.sin(Math.PI * j / n); + } + + // Temporary vectors and preprocessing + var areal = new Array(m); + var aimag = new Array(m); + for (var i = 0; i < n; i++) { + areal[i] = real[i] * cosTable[i] + imag[i] * sinTable[i]; + aimag[i] = -real[i] * sinTable[i] + imag[i] * cosTable[i]; + } + for (var i = n; i < m; i++) + areal[i] = aimag[i] = 0; + var breal = new Array(m); + var bimag = new Array(m); + breal[0] = cosTable[0]; + bimag[0] = sinTable[0]; + for (var i = 1; i < n; i++) { + breal[i] = breal[m - i] = cosTable[i]; + bimag[i] = bimag[m - i] = sinTable[i]; + } + for (var i = n; i <= m - n; i++) + breal[i] = bimag[i] = 0; + + // Convolution + var creal = new Array(m); + var cimag = new Array(m); + convolveComplex(areal, aimag, breal, bimag, creal, cimag); + + // Postprocessing + for (var i = 0; i < n; i++) { + real[i] = creal[i] * cosTable[i] + cimag[i] * sinTable[i]; + imag[i] = -creal[i] * sinTable[i] + cimag[i] * cosTable[i]; + } +} + + +/* + * Computes the circular convolution of the given real vectors. Each vector's length must be the same. + */ +function convolveReal(x, y, out) { + if (x.length != y.length || x.length != out.length) + throw "Mismatched lengths"; + var zeros = new Array(x.length); + for (var i = 0; i < zeros.length; i++) + zeros[i] = 0; + convolveComplex(x, zeros, y, zeros.slice(0), out, zeros.slice(0)); +} + + +/* + * Computes the circular convolution of the given complex vectors. Each vector's length must be the same. + */ +function convolveComplex(xreal, ximag, yreal, yimag, outreal, outimag) { + if (xreal.length != ximag.length || xreal.length != yreal.length || yreal.length != yimag.length || xreal.length != outreal.length || outreal.length != outimag.length) + throw "Mismatched lengths"; + + var n = xreal.length; + xreal = xreal.slice(0); + ximag = ximag.slice(0); + yreal = yreal.slice(0); + yimag = yimag.slice(0); + + transform(xreal, ximag); + transform(yreal, yimag); + for (var i = 0; i < n; i++) { + var temp = xreal[i] * yreal[i] - ximag[i] * yimag[i]; + ximag[i] = ximag[i] * yreal[i] + xreal[i] * yimag[i]; + xreal[i] = temp; + } + inverseTransform(xreal, ximag); + for (var i = 0; i < n; i++) { // Scaling (because this FFT implementation omits it) + outreal[i] = xreal[i] / n; + outimag[i] = ximag[i] / n; + } +}