Chris@19: /* Chris@19: * Copyright (c) 2003, 2007-14 Matteo Frigo Chris@19: * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology Chris@19: * Chris@19: * This program is free software; you can redistribute it and/or modify Chris@19: * it under the terms of the GNU General Public License as published by Chris@19: * the Free Software Foundation; either version 2 of the License, or Chris@19: * (at your option) any later version. Chris@19: * Chris@19: * This program is distributed in the hope that it will be useful, Chris@19: * but WITHOUT ANY WARRANTY; without even the implied warranty of Chris@19: * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the Chris@19: * GNU General Public License for more details. Chris@19: * Chris@19: * You should have received a copy of the GNU General Public License Chris@19: * along with this program; if not, write to the Free Software Chris@19: * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA Chris@19: * Chris@19: */ Chris@19: Chris@19: Chris@19: /* Do an R{E,O}DFT{01,10} problem via an R2HC problem, with some Chris@19: pre/post-processing ala FFTPACK. */ Chris@19: Chris@19: #include "reodft.h" Chris@19: Chris@19: typedef struct { Chris@19: solver super; Chris@19: } S; Chris@19: Chris@19: typedef struct { Chris@19: plan_rdft super; Chris@19: plan *cld; Chris@19: twid *td; Chris@19: INT is, os; Chris@19: INT n; Chris@19: INT vl; Chris@19: INT ivs, ovs; Chris@19: rdft_kind kind; Chris@19: } P; Chris@19: Chris@19: /* A real-even-01 DFT operates logically on a size-4N array: Chris@19: I 0 -r(I*) -I 0 r(I*), Chris@19: where r denotes reversal and * denotes deletion of the 0th element. Chris@19: To compute the transform of this, we imagine performing a radix-4 Chris@19: (real-input) DIF step, which turns the size-4N DFT into 4 size-N Chris@19: (contiguous) DFTs, two of which are zero and two of which are Chris@19: conjugates. The non-redundant size-N DFT has halfcomplex input, so Chris@19: we can do it with a size-N hc2r transform. (In order to share Chris@19: plans with the re10 (inverse) transform, however, we use the DHT Chris@19: trick to re-express the hc2r problem as r2hc. This has little cost Chris@19: since we are already pre- and post-processing the data in {i,n-i} Chris@19: order.) Finally, we have to write out the data in the correct Chris@19: order...the two size-N redundant (conjugate) hc2r DFTs correspond Chris@19: to the even and odd outputs in O (i.e. the usual interleaved output Chris@19: of DIF transforms); since this data has even symmetry, we only Chris@19: write the first half of it. Chris@19: Chris@19: The real-even-10 DFT is just the reverse of these steps, i.e. a Chris@19: radix-4 DIT transform. There, however, we just use the r2hc Chris@19: transform naturally without resorting to the DHT trick. Chris@19: Chris@19: A real-odd-01 DFT is very similar, except that the input is Chris@19: 0 I (rI)* 0 -I -(rI)*. This format, however, can be transformed Chris@19: into precisely the real-even-01 format above by sending I -> rI Chris@19: and shifting the array by N. The former swap is just another Chris@19: transformation on the input during preprocessing; the latter Chris@19: multiplies the even/odd outputs by i/-i, which combines with Chris@19: the factor of -i (to take the imaginary part) to simply flip Chris@19: the sign of the odd outputs. Vice-versa for real-odd-10. Chris@19: Chris@19: The FFTPACK source code was very helpful in working this out. Chris@19: (They do unnecessary passes over the array, though.) The same Chris@19: algorithm is also described in: Chris@19: Chris@19: John Makhoul, "A fast cosine transform in one and two dimensions," Chris@19: IEEE Trans. on Acoust. Speech and Sig. Proc., ASSP-28 (1), 27--34 (1980). Chris@19: Chris@19: Note that Numerical Recipes suggests a different algorithm that Chris@19: requires more operations and uses trig. functions for both the pre- Chris@19: and post-processing passes. Chris@19: */ Chris@19: Chris@19: static void apply_re01(const plan *ego_, R *I, R *O) Chris@19: { Chris@19: const P *ego = (const P *) ego_; Chris@19: INT is = ego->is, os = ego->os; Chris@19: INT i, n = ego->n; Chris@19: INT iv, vl = ego->vl; Chris@19: INT ivs = ego->ivs, ovs = ego->ovs; Chris@19: R *W = ego->td->W; Chris@19: R *buf; Chris@19: Chris@19: buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); Chris@19: Chris@19: for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) { Chris@19: buf[0] = I[0]; Chris@19: for (i = 1; i < n - i; ++i) { Chris@19: E a, b, apb, amb, wa, wb; Chris@19: a = I[is * i]; Chris@19: b = I[is * (n - i)]; Chris@19: apb = a + b; Chris@19: amb = a - b; Chris@19: wa = W[2*i]; Chris@19: wb = W[2*i + 1]; Chris@19: buf[i] = wa * amb + wb * apb; Chris@19: buf[n - i] = wa * apb - wb * amb; Chris@19: } Chris@19: if (i == n - i) { Chris@19: buf[i] = K(2.0) * I[is * i] * W[2*i]; Chris@19: } Chris@19: Chris@19: { Chris@19: plan_rdft *cld = (plan_rdft *) ego->cld; Chris@19: cld->apply((plan *) cld, buf, buf); Chris@19: } Chris@19: Chris@19: O[0] = buf[0]; Chris@19: for (i = 1; i < n - i; ++i) { Chris@19: E a, b; Chris@19: INT k; Chris@19: a = buf[i]; Chris@19: b = buf[n - i]; Chris@19: k = i + i; Chris@19: O[os * (k - 1)] = a - b; Chris@19: O[os * k] = a + b; Chris@19: } Chris@19: if (i == n - i) { Chris@19: O[os * (n - 1)] = buf[i]; Chris@19: } Chris@19: } Chris@19: Chris@19: X(ifree)(buf); Chris@19: } Chris@19: Chris@19: /* ro01 is same as re01, but with i <-> n - 1 - i in the input and Chris@19: the sign of the odd output elements flipped. */ Chris@19: static void apply_ro01(const plan *ego_, R *I, R *O) Chris@19: { Chris@19: const P *ego = (const P *) ego_; Chris@19: INT is = ego->is, os = ego->os; Chris@19: INT i, n = ego->n; Chris@19: INT iv, vl = ego->vl; Chris@19: INT ivs = ego->ivs, ovs = ego->ovs; Chris@19: R *W = ego->td->W; Chris@19: R *buf; Chris@19: Chris@19: buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); Chris@19: Chris@19: for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) { Chris@19: buf[0] = I[is * (n - 1)]; Chris@19: for (i = 1; i < n - i; ++i) { Chris@19: E a, b, apb, amb, wa, wb; Chris@19: a = I[is * (n - 1 - i)]; Chris@19: b = I[is * (i - 1)]; Chris@19: apb = a + b; Chris@19: amb = a - b; Chris@19: wa = W[2*i]; Chris@19: wb = W[2*i+1]; Chris@19: buf[i] = wa * amb + wb * apb; Chris@19: buf[n - i] = wa * apb - wb * amb; Chris@19: } Chris@19: if (i == n - i) { Chris@19: buf[i] = K(2.0) * I[is * (i - 1)] * W[2*i]; Chris@19: } Chris@19: Chris@19: { Chris@19: plan_rdft *cld = (plan_rdft *) ego->cld; Chris@19: cld->apply((plan *) cld, buf, buf); Chris@19: } Chris@19: Chris@19: O[0] = buf[0]; Chris@19: for (i = 1; i < n - i; ++i) { Chris@19: E a, b; Chris@19: INT k; Chris@19: a = buf[i]; Chris@19: b = buf[n - i]; Chris@19: k = i + i; Chris@19: O[os * (k - 1)] = b - a; Chris@19: O[os * k] = a + b; Chris@19: } Chris@19: if (i == n - i) { Chris@19: O[os * (n - 1)] = -buf[i]; Chris@19: } Chris@19: } Chris@19: Chris@19: X(ifree)(buf); Chris@19: } Chris@19: Chris@19: static void apply_re10(const plan *ego_, R *I, R *O) Chris@19: { Chris@19: const P *ego = (const P *) ego_; Chris@19: INT is = ego->is, os = ego->os; Chris@19: INT i, n = ego->n; Chris@19: INT iv, vl = ego->vl; Chris@19: INT ivs = ego->ivs, ovs = ego->ovs; Chris@19: R *W = ego->td->W; Chris@19: R *buf; Chris@19: Chris@19: buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); Chris@19: Chris@19: for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) { Chris@19: buf[0] = I[0]; Chris@19: for (i = 1; i < n - i; ++i) { Chris@19: E u, v; Chris@19: INT k = i + i; Chris@19: u = I[is * (k - 1)]; Chris@19: v = I[is * k]; Chris@19: buf[n - i] = u; Chris@19: buf[i] = v; Chris@19: } Chris@19: if (i == n - i) { Chris@19: buf[i] = I[is * (n - 1)]; Chris@19: } Chris@19: Chris@19: { Chris@19: plan_rdft *cld = (plan_rdft *) ego->cld; Chris@19: cld->apply((plan *) cld, buf, buf); Chris@19: } Chris@19: Chris@19: O[0] = K(2.0) * buf[0]; Chris@19: for (i = 1; i < n - i; ++i) { Chris@19: E a, b, wa, wb; Chris@19: a = K(2.0) * buf[i]; Chris@19: b = K(2.0) * buf[n - i]; Chris@19: wa = W[2*i]; Chris@19: wb = W[2*i + 1]; Chris@19: O[os * i] = wa * a + wb * b; Chris@19: O[os * (n - i)] = wb * a - wa * b; Chris@19: } Chris@19: if (i == n - i) { Chris@19: O[os * i] = K(2.0) * buf[i] * W[2*i]; Chris@19: } Chris@19: } Chris@19: Chris@19: X(ifree)(buf); Chris@19: } Chris@19: Chris@19: /* ro10 is same as re10, but with i <-> n - 1 - i in the output and Chris@19: the sign of the odd input elements flipped. */ Chris@19: static void apply_ro10(const plan *ego_, R *I, R *O) Chris@19: { Chris@19: const P *ego = (const P *) ego_; Chris@19: INT is = ego->is, os = ego->os; Chris@19: INT i, n = ego->n; Chris@19: INT iv, vl = ego->vl; Chris@19: INT ivs = ego->ivs, ovs = ego->ovs; Chris@19: R *W = ego->td->W; Chris@19: R *buf; Chris@19: Chris@19: buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); Chris@19: Chris@19: for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) { Chris@19: buf[0] = I[0]; Chris@19: for (i = 1; i < n - i; ++i) { Chris@19: E u, v; Chris@19: INT k = i + i; Chris@19: u = -I[is * (k - 1)]; Chris@19: v = I[is * k]; Chris@19: buf[n - i] = u; Chris@19: buf[i] = v; Chris@19: } Chris@19: if (i == n - i) { Chris@19: buf[i] = -I[is * (n - 1)]; Chris@19: } Chris@19: Chris@19: { Chris@19: plan_rdft *cld = (plan_rdft *) ego->cld; Chris@19: cld->apply((plan *) cld, buf, buf); Chris@19: } Chris@19: Chris@19: O[os * (n - 1)] = K(2.0) * buf[0]; Chris@19: for (i = 1; i < n - i; ++i) { Chris@19: E a, b, wa, wb; Chris@19: a = K(2.0) * buf[i]; Chris@19: b = K(2.0) * buf[n - i]; Chris@19: wa = W[2*i]; Chris@19: wb = W[2*i + 1]; Chris@19: O[os * (n - 1 - i)] = wa * a + wb * b; Chris@19: O[os * (i - 1)] = wb * a - wa * b; Chris@19: } Chris@19: if (i == n - i) { Chris@19: O[os * (i - 1)] = K(2.0) * buf[i] * W[2*i]; Chris@19: } Chris@19: } Chris@19: Chris@19: X(ifree)(buf); Chris@19: } Chris@19: Chris@19: static void awake(plan *ego_, enum wakefulness wakefulness) Chris@19: { Chris@19: P *ego = (P *) ego_; Chris@19: static const tw_instr reodft010e_tw[] = { Chris@19: { TW_COS, 0, 1 }, Chris@19: { TW_SIN, 0, 1 }, Chris@19: { TW_NEXT, 1, 0 } Chris@19: }; Chris@19: Chris@19: X(plan_awake)(ego->cld, wakefulness); Chris@19: Chris@19: X(twiddle_awake)(wakefulness, &ego->td, reodft010e_tw, Chris@19: 4*ego->n, 1, ego->n/2+1); Chris@19: } Chris@19: Chris@19: static void destroy(plan *ego_) Chris@19: { Chris@19: P *ego = (P *) ego_; Chris@19: X(plan_destroy_internal)(ego->cld); Chris@19: } Chris@19: Chris@19: static void print(const plan *ego_, printer *p) Chris@19: { Chris@19: const P *ego = (const P *) ego_; Chris@19: p->print(p, "(%se-r2hc-%D%v%(%p%))", Chris@19: X(rdft_kind_str)(ego->kind), ego->n, ego->vl, ego->cld); Chris@19: } Chris@19: Chris@19: static int applicable0(const solver *ego_, const problem *p_) Chris@19: { Chris@19: const problem_rdft *p = (const problem_rdft *) p_; Chris@19: UNUSED(ego_); Chris@19: Chris@19: return (1 Chris@19: && p->sz->rnk == 1 Chris@19: && p->vecsz->rnk <= 1 Chris@19: && (p->kind[0] == REDFT01 || p->kind[0] == REDFT10 Chris@19: || p->kind[0] == RODFT01 || p->kind[0] == RODFT10) Chris@19: ); Chris@19: } Chris@19: Chris@19: static int applicable(const solver *ego, const problem *p, const planner *plnr) Chris@19: { Chris@19: return (!NO_SLOWP(plnr) && applicable0(ego, p)); Chris@19: } Chris@19: Chris@19: static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) Chris@19: { Chris@19: P *pln; Chris@19: const problem_rdft *p; Chris@19: plan *cld; Chris@19: R *buf; Chris@19: INT n; Chris@19: opcnt ops; Chris@19: Chris@19: static const plan_adt padt = { Chris@19: X(rdft_solve), awake, print, destroy Chris@19: }; Chris@19: Chris@19: if (!applicable(ego_, p_, plnr)) Chris@19: return (plan *)0; Chris@19: Chris@19: p = (const problem_rdft *) p_; Chris@19: Chris@19: n = p->sz->dims[0].n; Chris@19: buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); Chris@19: Chris@19: cld = X(mkplan_d)(plnr, X(mkproblem_rdft_1_d)(X(mktensor_1d)(n, 1, 1), Chris@19: X(mktensor_0d)(), Chris@19: buf, buf, R2HC)); Chris@19: X(ifree)(buf); Chris@19: if (!cld) Chris@19: return (plan *)0; Chris@19: Chris@19: switch (p->kind[0]) { Chris@19: case REDFT01: pln = MKPLAN_RDFT(P, &padt, apply_re01); break; Chris@19: case REDFT10: pln = MKPLAN_RDFT(P, &padt, apply_re10); break; Chris@19: case RODFT01: pln = MKPLAN_RDFT(P, &padt, apply_ro01); break; Chris@19: case RODFT10: pln = MKPLAN_RDFT(P, &padt, apply_ro10); break; Chris@19: default: A(0); return (plan*)0; Chris@19: } Chris@19: Chris@19: pln->n = n; Chris@19: pln->is = p->sz->dims[0].is; Chris@19: pln->os = p->sz->dims[0].os; Chris@19: pln->cld = cld; Chris@19: pln->td = 0; Chris@19: pln->kind = p->kind[0]; Chris@19: Chris@19: X(tensor_tornk1)(p->vecsz, &pln->vl, &pln->ivs, &pln->ovs); Chris@19: Chris@19: X(ops_zero)(&ops); Chris@19: ops.other = 4 + (n-1)/2 * 10 + (1 - n % 2) * 5; Chris@19: if (p->kind[0] == REDFT01 || p->kind[0] == RODFT01) { Chris@19: ops.add = (n-1)/2 * 6; Chris@19: ops.mul = (n-1)/2 * 4 + (1 - n % 2) * 2; Chris@19: } Chris@19: else { /* 10 transforms */ Chris@19: ops.add = (n-1)/2 * 2; Chris@19: ops.mul = 1 + (n-1)/2 * 6 + (1 - n % 2) * 2; Chris@19: } Chris@19: Chris@19: X(ops_zero)(&pln->super.super.ops); Chris@19: X(ops_madd2)(pln->vl, &ops, &pln->super.super.ops); Chris@19: X(ops_madd2)(pln->vl, &cld->ops, &pln->super.super.ops); Chris@19: Chris@19: return &(pln->super.super); Chris@19: } Chris@19: Chris@19: /* constructor */ Chris@19: static solver *mksolver(void) Chris@19: { Chris@19: static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 }; Chris@19: S *slv = MKSOLVER(S, &sadt); Chris@19: return &(slv->super); Chris@19: } Chris@19: Chris@19: void X(reodft010e_r2hc_register)(planner *p) Chris@19: { Chris@19: REGISTER_SOLVER(p, mksolver()); Chris@19: }