Chris@19: /* Chris@19: * Copyright (c) 2003, 2007-14 Matteo Frigo Chris@19: * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology Chris@19: * Chris@19: * This program is free software; you can redistribute it and/or modify Chris@19: * it under the terms of the GNU General Public License as published by Chris@19: * the Free Software Foundation; either version 2 of the License, or Chris@19: * (at your option) any later version. Chris@19: * Chris@19: * This program is distributed in the hope that it will be useful, Chris@19: * but WITHOUT ANY WARRANTY; without even the implied warranty of Chris@19: * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the Chris@19: * GNU General Public License for more details. Chris@19: * Chris@19: * You should have received a copy of the GNU General Public License Chris@19: * along with this program; if not, write to the Free Software Chris@19: * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA Chris@19: * Chris@19: */ Chris@19: Chris@19: Chris@19: /* Solve an R2HC/HC2R problem via post/pre processing of a DHT. This Chris@19: is mainly useful because we can use Rader to compute DHTs of prime Chris@19: sizes. It also allows us to express hc2r problems in terms of r2hc Chris@19: (via dht-r2hc), and to do hc2r problems without destroying the input. */ Chris@19: Chris@19: #include "rdft.h" Chris@19: Chris@19: typedef struct { Chris@19: solver super; Chris@19: } S; Chris@19: Chris@19: typedef struct { Chris@19: plan_rdft super; Chris@19: plan *cld; Chris@19: INT is, os; Chris@19: INT n; Chris@19: } P; Chris@19: Chris@19: static void apply_r2hc(const plan *ego_, R *I, R *O) Chris@19: { Chris@19: const P *ego = (const P *) ego_; Chris@19: INT os; Chris@19: INT i, n; Chris@19: Chris@19: { Chris@19: plan_rdft *cld = (plan_rdft *) ego->cld; Chris@19: cld->apply((plan *) cld, I, O); Chris@19: } Chris@19: Chris@19: n = ego->n; Chris@19: os = ego->os; Chris@19: for (i = 1; i < n - i; ++i) { Chris@19: E a, b; Chris@19: a = K(0.5) * O[os * i]; Chris@19: b = K(0.5) * O[os * (n - i)]; Chris@19: O[os * i] = a + b; Chris@19: #if FFT_SIGN == -1 Chris@19: O[os * (n - i)] = b - a; Chris@19: #else Chris@19: O[os * (n - i)] = a - b; Chris@19: #endif Chris@19: } Chris@19: } Chris@19: Chris@19: /* hc2r, destroying input as usual */ Chris@19: static void apply_hc2r(const plan *ego_, R *I, R *O) Chris@19: { Chris@19: const P *ego = (const P *) ego_; Chris@19: INT is = ego->is; Chris@19: INT i, n = ego->n; Chris@19: Chris@19: for (i = 1; i < n - i; ++i) { Chris@19: E a, b; Chris@19: a = I[is * i]; Chris@19: b = I[is * (n - i)]; Chris@19: #if FFT_SIGN == -1 Chris@19: I[is * i] = a - b; Chris@19: I[is * (n - i)] = a + b; Chris@19: #else Chris@19: I[is * i] = a + b; Chris@19: I[is * (n - i)] = a - b; Chris@19: #endif Chris@19: } Chris@19: Chris@19: { Chris@19: plan_rdft *cld = (plan_rdft *) ego->cld; Chris@19: cld->apply((plan *) cld, I, O); Chris@19: } Chris@19: } Chris@19: Chris@19: /* hc2r, without destroying input */ Chris@19: static void apply_hc2r_save(const plan *ego_, R *I, R *O) Chris@19: { Chris@19: const P *ego = (const P *) ego_; Chris@19: INT is = ego->is, os = ego->os; Chris@19: INT i, n = ego->n; Chris@19: Chris@19: O[0] = I[0]; Chris@19: for (i = 1; i < n - i; ++i) { Chris@19: E a, b; Chris@19: a = I[is * i]; Chris@19: b = I[is * (n - i)]; Chris@19: #if FFT_SIGN == -1 Chris@19: O[os * i] = a - b; Chris@19: O[os * (n - i)] = a + b; Chris@19: #else Chris@19: O[os * i] = a + b; Chris@19: O[os * (n - i)] = a - b; Chris@19: #endif Chris@19: } Chris@19: if (i == n - i) Chris@19: O[os * i] = I[is * i]; Chris@19: Chris@19: { Chris@19: plan_rdft *cld = (plan_rdft *) ego->cld; Chris@19: cld->apply((plan *) cld, O, O); Chris@19: } Chris@19: } Chris@19: Chris@19: static void awake(plan *ego_, enum wakefulness wakefulness) Chris@19: { Chris@19: P *ego = (P *) ego_; Chris@19: X(plan_awake)(ego->cld, wakefulness); Chris@19: } Chris@19: Chris@19: static void destroy(plan *ego_) Chris@19: { Chris@19: P *ego = (P *) ego_; Chris@19: X(plan_destroy_internal)(ego->cld); Chris@19: } Chris@19: Chris@19: static void print(const plan *ego_, printer *p) Chris@19: { Chris@19: const P *ego = (const P *) ego_; Chris@19: p->print(p, "(%s-dht-%D%(%p%))", Chris@19: ego->super.apply == apply_r2hc ? "r2hc" : "hc2r", Chris@19: ego->n, ego->cld); Chris@19: } Chris@19: Chris@19: static int applicable0(const solver *ego_, const problem *p_) Chris@19: { Chris@19: const problem_rdft *p = (const problem_rdft *) p_; Chris@19: UNUSED(ego_); Chris@19: Chris@19: return (1 Chris@19: && p->sz->rnk == 1 Chris@19: && p->vecsz->rnk == 0 Chris@19: && (p->kind[0] == R2HC || p->kind[0] == HC2R) Chris@19: Chris@19: /* hack: size-2 DHT etc. are defined as being equivalent Chris@19: to size-2 R2HC in problem.c, so we need this to prevent Chris@19: infinite loops for size 2 in EXHAUSTIVE mode: */ Chris@19: && p->sz->dims[0].n > 2 Chris@19: ); Chris@19: } Chris@19: Chris@19: static int applicable(const solver *ego, const problem *p_, Chris@19: const planner *plnr) Chris@19: { Chris@19: return (!NO_SLOWP(plnr) && applicable0(ego, p_)); Chris@19: } Chris@19: Chris@19: static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) Chris@19: { Chris@19: P *pln; Chris@19: const problem_rdft *p; Chris@19: problem *cldp; Chris@19: plan *cld; Chris@19: Chris@19: static const plan_adt padt = { Chris@19: X(rdft_solve), awake, print, destroy Chris@19: }; Chris@19: Chris@19: if (!applicable(ego_, p_, plnr)) Chris@19: return (plan *)0; Chris@19: Chris@19: p = (const problem_rdft *) p_; Chris@19: Chris@19: if (p->kind[0] == R2HC || !NO_DESTROY_INPUTP(plnr)) Chris@19: cldp = X(mkproblem_rdft_1)(p->sz, p->vecsz, p->I, p->O, DHT); Chris@19: else { Chris@19: tensor *sz = X(tensor_copy_inplace)(p->sz, INPLACE_OS); Chris@19: cldp = X(mkproblem_rdft_1)(sz, p->vecsz, p->O, p->O, DHT); Chris@19: X(tensor_destroy)(sz); Chris@19: } Chris@19: cld = X(mkplan_d)(plnr, cldp); Chris@19: if (!cld) return (plan *)0; Chris@19: Chris@19: pln = MKPLAN_RDFT(P, &padt, p->kind[0] == R2HC ? Chris@19: apply_r2hc : (NO_DESTROY_INPUTP(plnr) ? Chris@19: apply_hc2r_save : apply_hc2r)); Chris@19: pln->n = p->sz->dims[0].n; Chris@19: pln->is = p->sz->dims[0].is; Chris@19: pln->os = p->sz->dims[0].os; Chris@19: pln->cld = cld; Chris@19: Chris@19: pln->super.super.ops = cld->ops; Chris@19: pln->super.super.ops.other += 4 * ((pln->n - 1)/2); Chris@19: pln->super.super.ops.add += 2 * ((pln->n - 1)/2); Chris@19: if (p->kind[0] == R2HC) Chris@19: pln->super.super.ops.mul += 2 * ((pln->n - 1)/2); Chris@19: if (pln->super.apply == apply_hc2r_save) Chris@19: pln->super.super.ops.other += 2 + (pln->n % 2 ? 0 : 2); Chris@19: Chris@19: return &(pln->super.super); Chris@19: } Chris@19: Chris@19: /* constructor */ Chris@19: static solver *mksolver(void) Chris@19: { Chris@19: static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 }; Chris@19: S *slv = MKSOLVER(S, &sadt); Chris@19: return &(slv->super); Chris@19: } Chris@19: Chris@19: void X(rdft_dht_register)(planner *p) Chris@19: { Chris@19: REGISTER_SOLVER(p, mksolver()); Chris@19: }