Chris@19: /* Chris@19: * Copyright (c) 2003, 2007-14 Matteo Frigo Chris@19: * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology Chris@19: * Chris@19: * This program is free software; you can redistribute it and/or modify Chris@19: * it under the terms of the GNU General Public License as published by Chris@19: * the Free Software Foundation; either version 2 of the License, or Chris@19: * (at your option) any later version. Chris@19: * Chris@19: * This program is distributed in the hope that it will be useful, Chris@19: * but WITHOUT ANY WARRANTY; without even the implied warranty of Chris@19: * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the Chris@19: * GNU General Public License for more details. Chris@19: * Chris@19: * You should have received a copy of the GNU General Public License Chris@19: * along with this program; if not, write to the Free Software Chris@19: * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA Chris@19: * Chris@19: */ Chris@19: Chris@19: Chris@19: /* plans for RDFT of rank >= 2 (multidimensional) */ Chris@19: Chris@19: /* FIXME: this solver cannot strictly be applied to multidimensional Chris@19: DHTs, since the latter are not separable...up to rnk-1 additional Chris@19: post-processing passes may be required. See also: Chris@19: Chris@19: R. N. Bracewell, O. Buneman, H. Hao, and J. Villasenor, "Fast Chris@19: two-dimensional Hartley transform," Proc. IEEE 74, 1282-1283 (1986). Chris@19: Chris@19: H. Hao and R. N. Bracewell, "A three-dimensional DFT algorithm Chris@19: using the fast Hartley transform," Proc. IEEE 75(2), 264-266 (1987). Chris@19: */ Chris@19: Chris@19: #include "rdft.h" Chris@19: Chris@19: typedef struct { Chris@19: solver super; Chris@19: int spltrnk; Chris@19: const int *buddies; Chris@19: int nbuddies; Chris@19: } S; Chris@19: Chris@19: typedef struct { Chris@19: plan_rdft super; Chris@19: Chris@19: plan *cld1, *cld2; Chris@19: const S *solver; Chris@19: } P; Chris@19: Chris@19: /* Compute multi-dimensional RDFT by applying the two cld plans Chris@19: (lower-rnk RDFTs). */ Chris@19: static void apply(const plan *ego_, R *I, R *O) Chris@19: { Chris@19: const P *ego = (const P *) ego_; Chris@19: plan_rdft *cld1, *cld2; Chris@19: Chris@19: cld1 = (plan_rdft *) ego->cld1; Chris@19: cld1->apply(ego->cld1, I, O); Chris@19: Chris@19: cld2 = (plan_rdft *) ego->cld2; Chris@19: cld2->apply(ego->cld2, O, O); Chris@19: } Chris@19: Chris@19: Chris@19: static void awake(plan *ego_, enum wakefulness wakefulness) Chris@19: { Chris@19: P *ego = (P *) ego_; Chris@19: X(plan_awake)(ego->cld1, wakefulness); Chris@19: X(plan_awake)(ego->cld2, wakefulness); Chris@19: } Chris@19: Chris@19: static void destroy(plan *ego_) Chris@19: { Chris@19: P *ego = (P *) ego_; Chris@19: X(plan_destroy_internal)(ego->cld2); Chris@19: X(plan_destroy_internal)(ego->cld1); Chris@19: } Chris@19: Chris@19: static void print(const plan *ego_, printer *p) Chris@19: { Chris@19: const P *ego = (const P *) ego_; Chris@19: const S *s = ego->solver; Chris@19: p->print(p, "(rdft-rank>=2/%d%(%p%)%(%p%))", Chris@19: s->spltrnk, ego->cld1, ego->cld2); Chris@19: } Chris@19: Chris@19: static int picksplit(const S *ego, const tensor *sz, int *rp) Chris@19: { Chris@19: A(sz->rnk > 1); /* cannot split rnk <= 1 */ Chris@19: if (!X(pickdim)(ego->spltrnk, ego->buddies, ego->nbuddies, sz, 1, rp)) Chris@19: return 0; Chris@19: *rp += 1; /* convert from dim. index to rank */ Chris@19: if (*rp >= sz->rnk) /* split must reduce rank */ Chris@19: return 0; Chris@19: return 1; Chris@19: } Chris@19: Chris@19: static int applicable0(const solver *ego_, const problem *p_, int *rp) Chris@19: { Chris@19: const problem_rdft *p = (const problem_rdft *) p_; Chris@19: const S *ego = (const S *)ego_; Chris@19: return (1 Chris@19: && FINITE_RNK(p->sz->rnk) && FINITE_RNK(p->vecsz->rnk) Chris@19: && p->sz->rnk >= 2 Chris@19: && picksplit(ego, p->sz, rp) Chris@19: ); Chris@19: } Chris@19: Chris@19: /* TODO: revise this. */ Chris@19: static int applicable(const solver *ego_, const problem *p_, Chris@19: const planner *plnr, int *rp) Chris@19: { Chris@19: const S *ego = (const S *)ego_; Chris@19: Chris@19: if (!applicable0(ego_, p_, rp)) return 0; Chris@19: Chris@19: if (NO_RANK_SPLITSP(plnr) && (ego->spltrnk != ego->buddies[0])) Chris@19: return 0; Chris@19: Chris@19: if (NO_UGLYP(plnr)) { Chris@19: /* Heuristic: if the vector stride is greater than the transform Chris@19: sz, don't use (prefer to do the vector loop first with a Chris@19: vrank-geq1 plan). */ Chris@19: const problem_rdft *p = (const problem_rdft *) p_; Chris@19: Chris@19: if (p->vecsz->rnk > 0 && Chris@19: X(tensor_min_stride)(p->vecsz) > X(tensor_max_index)(p->sz)) Chris@19: return 0; Chris@19: } Chris@19: Chris@19: return 1; Chris@19: } Chris@19: Chris@19: static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) Chris@19: { Chris@19: const S *ego = (const S *) ego_; Chris@19: const problem_rdft *p; Chris@19: P *pln; Chris@19: plan *cld1 = 0, *cld2 = 0; Chris@19: tensor *sz1, *sz2, *vecszi, *sz2i; Chris@19: int spltrnk; Chris@19: Chris@19: static const plan_adt padt = { Chris@19: X(rdft_solve), awake, print, destroy Chris@19: }; Chris@19: Chris@19: if (!applicable(ego_, p_, plnr, &spltrnk)) Chris@19: return (plan *) 0; Chris@19: Chris@19: p = (const problem_rdft *) p_; Chris@19: X(tensor_split)(p->sz, &sz1, spltrnk, &sz2); Chris@19: vecszi = X(tensor_copy_inplace)(p->vecsz, INPLACE_OS); Chris@19: sz2i = X(tensor_copy_inplace)(sz2, INPLACE_OS); Chris@19: Chris@19: cld1 = X(mkplan_d)(plnr, Chris@19: X(mkproblem_rdft_d)(X(tensor_copy)(sz2), Chris@19: X(tensor_append)(p->vecsz, sz1), Chris@19: p->I, p->O, p->kind + spltrnk)); Chris@19: if (!cld1) goto nada; Chris@19: Chris@19: cld2 = X(mkplan_d)(plnr, Chris@19: X(mkproblem_rdft_d)( Chris@19: X(tensor_copy_inplace)(sz1, INPLACE_OS), Chris@19: X(tensor_append)(vecszi, sz2i), Chris@19: p->O, p->O, p->kind)); Chris@19: if (!cld2) goto nada; Chris@19: Chris@19: pln = MKPLAN_RDFT(P, &padt, apply); Chris@19: Chris@19: pln->cld1 = cld1; Chris@19: pln->cld2 = cld2; Chris@19: Chris@19: pln->solver = ego; Chris@19: X(ops_add)(&cld1->ops, &cld2->ops, &pln->super.super.ops); Chris@19: Chris@19: X(tensor_destroy4)(sz2, sz1, vecszi, sz2i); Chris@19: Chris@19: return &(pln->super.super); Chris@19: Chris@19: nada: Chris@19: X(plan_destroy_internal)(cld2); Chris@19: X(plan_destroy_internal)(cld1); Chris@19: X(tensor_destroy4)(sz2, sz1, vecszi, sz2i); Chris@19: return (plan *) 0; Chris@19: } Chris@19: Chris@19: static solver *mksolver(int spltrnk, const int *buddies, int nbuddies) Chris@19: { Chris@19: static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 }; Chris@19: S *slv = MKSOLVER(S, &sadt); Chris@19: slv->spltrnk = spltrnk; Chris@19: slv->buddies = buddies; Chris@19: slv->nbuddies = nbuddies; Chris@19: return &(slv->super); Chris@19: } Chris@19: Chris@19: void X(rdft_rank_geq2_register)(planner *p) Chris@19: { Chris@19: int i; Chris@19: static const int buddies[] = { 1, 0, -2 }; Chris@19: Chris@19: const int nbuddies = (int)(sizeof(buddies) / sizeof(buddies[0])); Chris@19: Chris@19: for (i = 0; i < nbuddies; ++i) Chris@19: REGISTER_SOLVER(p, mksolver(buddies[i], buddies, nbuddies)); Chris@19: Chris@19: /* FIXME: Should we try more buddies? See also dft/rank-geq2. */ Chris@19: }