Chris@19: /* Chris@19: * Copyright (c) 2003, 2007-14 Matteo Frigo Chris@19: * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology Chris@19: * Chris@19: * This program is free software; you can redistribute it and/or modify Chris@19: * it under the terms of the GNU General Public License as published by Chris@19: * the Free Software Foundation; either version 2 of the License, or Chris@19: * (at your option) any later version. Chris@19: * Chris@19: * This program is distributed in the hope that it will be useful, Chris@19: * but WITHOUT ANY WARRANTY; without even the implied warranty of Chris@19: * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the Chris@19: * GNU General Public License for more details. Chris@19: * Chris@19: * You should have received a copy of the GNU General Public License Chris@19: * along with this program; if not, write to the Free Software Chris@19: * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA Chris@19: * Chris@19: */ Chris@19: Chris@19: Chris@19: Chris@19: /* solvers/plans for vectors of small RDFT's that cannot be done Chris@19: in-place directly. Use a rank-0 plan to rearrange the data Chris@19: before or after the transform. Can also change an out-of-place Chris@19: plan into a copy + in-place (where the in-place transform Chris@19: is e.g. unit stride). */ Chris@19: Chris@19: /* FIXME: merge with rank-geq2.c(?), since this is just a special case Chris@19: of a rank split where the first/second transform has rank 0. */ Chris@19: Chris@19: #include "rdft.h" Chris@19: Chris@19: typedef problem *(*mkcld_t) (const problem_rdft *p); Chris@19: Chris@19: typedef struct { Chris@19: rdftapply apply; Chris@19: problem *(*mkcld)(const problem_rdft *p); Chris@19: const char *nam; Chris@19: } ndrct_adt; Chris@19: Chris@19: typedef struct { Chris@19: solver super; Chris@19: const ndrct_adt *adt; Chris@19: } S; Chris@19: Chris@19: typedef struct { Chris@19: plan_rdft super; Chris@19: plan *cldcpy, *cld; Chris@19: const S *slv; Chris@19: } P; Chris@19: Chris@19: /*-----------------------------------------------------------------------*/ Chris@19: /* first rearrange, then transform */ Chris@19: static void apply_before(const plan *ego_, R *I, R *O) Chris@19: { Chris@19: const P *ego = (const P *) ego_; Chris@19: Chris@19: { Chris@19: plan_rdft *cldcpy = (plan_rdft *) ego->cldcpy; Chris@19: cldcpy->apply(ego->cldcpy, I, O); Chris@19: } Chris@19: { Chris@19: plan_rdft *cld = (plan_rdft *) ego->cld; Chris@19: cld->apply(ego->cld, O, O); Chris@19: } Chris@19: } Chris@19: Chris@19: static problem *mkcld_before(const problem_rdft *p) Chris@19: { Chris@19: return X(mkproblem_rdft_d)(X(tensor_copy_inplace)(p->sz, INPLACE_OS), Chris@19: X(tensor_copy_inplace)(p->vecsz, INPLACE_OS), Chris@19: p->O, p->O, p->kind); Chris@19: } Chris@19: Chris@19: static const ndrct_adt adt_before = Chris@19: { Chris@19: apply_before, mkcld_before, "rdft-indirect-before" Chris@19: }; Chris@19: Chris@19: /*-----------------------------------------------------------------------*/ Chris@19: /* first transform, then rearrange */ Chris@19: Chris@19: static void apply_after(const plan *ego_, R *I, R *O) Chris@19: { Chris@19: const P *ego = (const P *) ego_; Chris@19: Chris@19: { Chris@19: plan_rdft *cld = (plan_rdft *) ego->cld; Chris@19: cld->apply(ego->cld, I, I); Chris@19: } Chris@19: { Chris@19: plan_rdft *cldcpy = (plan_rdft *) ego->cldcpy; Chris@19: cldcpy->apply(ego->cldcpy, I, O); Chris@19: } Chris@19: } Chris@19: Chris@19: static problem *mkcld_after(const problem_rdft *p) Chris@19: { Chris@19: return X(mkproblem_rdft_d)(X(tensor_copy_inplace)(p->sz, INPLACE_IS), Chris@19: X(tensor_copy_inplace)(p->vecsz, INPLACE_IS), Chris@19: p->I, p->I, p->kind); Chris@19: } Chris@19: Chris@19: static const ndrct_adt adt_after = Chris@19: { Chris@19: apply_after, mkcld_after, "rdft-indirect-after" Chris@19: }; Chris@19: Chris@19: /*-----------------------------------------------------------------------*/ Chris@19: static void destroy(plan *ego_) Chris@19: { Chris@19: P *ego = (P *) ego_; Chris@19: X(plan_destroy_internal)(ego->cld); Chris@19: X(plan_destroy_internal)(ego->cldcpy); Chris@19: } Chris@19: Chris@19: static void awake(plan *ego_, enum wakefulness wakefulness) Chris@19: { Chris@19: P *ego = (P *) ego_; Chris@19: X(plan_awake)(ego->cldcpy, wakefulness); Chris@19: X(plan_awake)(ego->cld, wakefulness); Chris@19: } Chris@19: Chris@19: static void print(const plan *ego_, printer *p) Chris@19: { Chris@19: const P *ego = (const P *) ego_; Chris@19: const S *s = ego->slv; Chris@19: p->print(p, "(%s%(%p%)%(%p%))", s->adt->nam, ego->cld, ego->cldcpy); Chris@19: } Chris@19: Chris@19: static int applicable0(const solver *ego_, const problem *p_, Chris@19: const planner *plnr) Chris@19: { Chris@19: const S *ego = (const S *) ego_; Chris@19: const problem_rdft *p = (const problem_rdft *) p_; Chris@19: return (1 Chris@19: && FINITE_RNK(p->vecsz->rnk) Chris@19: Chris@19: /* problem must be a nontrivial transform, not just a copy */ Chris@19: && p->sz->rnk > 0 Chris@19: Chris@19: && (0 Chris@19: Chris@19: /* problem must be in-place & require some Chris@19: rearrangement of the data */ Chris@19: || (p->I == p->O Chris@19: && !(X(tensor_inplace_strides2)(p->sz, p->vecsz))) Chris@19: Chris@19: /* or problem must be out of place, transforming Chris@19: from stride 1/2 to bigger stride, for apply_after */ Chris@19: || (p->I != p->O && ego->adt->apply == apply_after Chris@19: && !NO_DESTROY_INPUTP(plnr) Chris@19: && X(tensor_min_istride)(p->sz) <= 2 Chris@19: && X(tensor_min_ostride)(p->sz) > 2) Chris@19: Chris@19: /* or problem must be out of place, transforming Chris@19: to stride 1/2 from bigger stride, for apply_before */ Chris@19: || (p->I != p->O && ego->adt->apply == apply_before Chris@19: && X(tensor_min_ostride)(p->sz) <= 2 Chris@19: && X(tensor_min_istride)(p->sz) > 2) Chris@19: Chris@19: ) Chris@19: ); Chris@19: } Chris@19: Chris@19: static int applicable(const solver *ego_, const problem *p_, Chris@19: const planner *plnr) Chris@19: { Chris@19: if (!applicable0(ego_, p_, plnr)) return 0; Chris@19: Chris@19: if (NO_INDIRECT_OP_P(plnr)) { Chris@19: const problem_rdft *p = (const problem_rdft *)p_; Chris@19: if (p->I != p->O) return 0; Chris@19: } Chris@19: Chris@19: return 1; Chris@19: } Chris@19: Chris@19: static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) Chris@19: { Chris@19: const problem_rdft *p = (const problem_rdft *) p_; Chris@19: const S *ego = (const S *) ego_; Chris@19: P *pln; Chris@19: plan *cld = 0, *cldcpy = 0; Chris@19: Chris@19: static const plan_adt padt = { Chris@19: X(rdft_solve), awake, print, destroy Chris@19: }; Chris@19: Chris@19: if (!applicable(ego_, p_, plnr)) Chris@19: return (plan *) 0; Chris@19: Chris@19: cldcpy = X(mkplan_d)(plnr, Chris@19: X(mkproblem_rdft_0_d)( Chris@19: X(tensor_append)(p->vecsz, p->sz), Chris@19: p->I, p->O)); Chris@19: if (!cldcpy) goto nada; Chris@19: Chris@19: cld = X(mkplan_f_d)(plnr, ego->adt->mkcld(p), NO_BUFFERING, 0, 0); Chris@19: if (!cld) goto nada; Chris@19: Chris@19: pln = MKPLAN_RDFT(P, &padt, ego->adt->apply); Chris@19: pln->cld = cld; Chris@19: pln->cldcpy = cldcpy; Chris@19: pln->slv = ego; Chris@19: X(ops_add)(&cld->ops, &cldcpy->ops, &pln->super.super.ops); Chris@19: Chris@19: return &(pln->super.super); Chris@19: Chris@19: nada: Chris@19: X(plan_destroy_internal)(cld); Chris@19: X(plan_destroy_internal)(cldcpy); Chris@19: return (plan *)0; Chris@19: } Chris@19: Chris@19: static solver *mksolver(const ndrct_adt *adt) Chris@19: { Chris@19: static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 }; Chris@19: S *slv = MKSOLVER(S, &sadt); Chris@19: slv->adt = adt; Chris@19: return &(slv->super); Chris@19: } Chris@19: Chris@19: void X(rdft_indirect_register)(planner *p) Chris@19: { Chris@19: unsigned i; Chris@19: static const ndrct_adt *const adts[] = { Chris@19: &adt_before, &adt_after Chris@19: }; Chris@19: Chris@19: for (i = 0; i < sizeof(adts) / sizeof(adts[0]); ++i) Chris@19: REGISTER_SOLVER(p, mksolver(adts[i])); Chris@19: }