Chris@19: Chris@19: Chris@19: Real-data DFTs - FFTW 3.3.4 Chris@19: Chris@19: Chris@19: Chris@19: Chris@19: Chris@19: Chris@19: Chris@19: Chris@19: Chris@19: Chris@19: Chris@19: Chris@19: Chris@19:
Chris@19: Chris@19: Chris@19:

Chris@19: Next: , Chris@19: Previous: Planner Flags, Chris@19: Up: Basic Interface Chris@19:


Chris@19:
Chris@19: Chris@19:

4.3.3 Real-data DFTs

Chris@19: Chris@19:
     fftw_plan fftw_plan_dft_r2c_1d(int n0,
Chris@19:                                     double *in, fftw_complex *out,
Chris@19:                                     unsigned flags);
Chris@19:      fftw_plan fftw_plan_dft_r2c_2d(int n0, int n1,
Chris@19:                                     double *in, fftw_complex *out,
Chris@19:                                     unsigned flags);
Chris@19:      fftw_plan fftw_plan_dft_r2c_3d(int n0, int n1, int n2,
Chris@19:                                     double *in, fftw_complex *out,
Chris@19:                                     unsigned flags);
Chris@19:      fftw_plan fftw_plan_dft_r2c(int rank, const int *n,
Chris@19:                                  double *in, fftw_complex *out,
Chris@19:                                  unsigned flags);
Chris@19: 
Chris@19:

Chris@19: Plan a real-input/complex-output discrete Fourier transform (DFT) in Chris@19: zero or more dimensions, returning an fftw_plan (see Using Plans). Chris@19: Chris@19:

Once you have created a plan for a certain transform type and Chris@19: parameters, then creating another plan of the same type and parameters, Chris@19: but for different arrays, is fast and shares constant data with the Chris@19: first plan (if it still exists). Chris@19: Chris@19:

The planner returns NULL if the plan cannot be created. A Chris@19: non-NULL plan is always returned by the basic interface unless Chris@19: you are using a customized FFTW configuration supporting a restricted Chris@19: set of transforms, or if you use the FFTW_PRESERVE_INPUT flag Chris@19: with a multi-dimensional out-of-place c2r transform (see below). Chris@19: Chris@19:

Arguments
Chris@19: Chris@19: Chris@19: Chris@19:

The inverse transforms, taking complex input (storing the non-redundant Chris@19: half of a logically Hermitian array) to real output, are given by: Chris@19: Chris@19:

     fftw_plan fftw_plan_dft_c2r_1d(int n0,
Chris@19:                                     fftw_complex *in, double *out,
Chris@19:                                     unsigned flags);
Chris@19:      fftw_plan fftw_plan_dft_c2r_2d(int n0, int n1,
Chris@19:                                     fftw_complex *in, double *out,
Chris@19:                                     unsigned flags);
Chris@19:      fftw_plan fftw_plan_dft_c2r_3d(int n0, int n1, int n2,
Chris@19:                                     fftw_complex *in, double *out,
Chris@19:                                     unsigned flags);
Chris@19:      fftw_plan fftw_plan_dft_c2r(int rank, const int *n,
Chris@19:                                  fftw_complex *in, double *out,
Chris@19:                                  unsigned flags);
Chris@19: 
Chris@19:

Chris@19: The arguments are the same as for the r2c transforms, except that the Chris@19: input and output data formats are reversed. Chris@19: Chris@19:

FFTW computes an unnormalized transform: computing an r2c followed by a Chris@19: c2r transform (or vice versa) will result in the original data Chris@19: multiplied by the size of the transform (the product of the logical Chris@19: dimensions). Chris@19: An r2c transform produces the same output as a FFTW_FORWARD Chris@19: complex DFT of the same input, and a c2r transform is correspondingly Chris@19: equivalent to FFTW_BACKWARD. For more information, see What FFTW Really Computes. Chris@19: Chris@19: Chris@19: Chris@19: