Chris@19: Chris@19: Chris@19: Complex DFTs - FFTW 3.3.4 Chris@19: Chris@19: Chris@19: Chris@19: Chris@19: Chris@19: Chris@19: Chris@19: Chris@19: Chris@19: Chris@19: Chris@19: Chris@19: Chris@19:
Chris@19: Chris@19:

Chris@19: Next: , Chris@19: Previous: Basic Interface, Chris@19: Up: Basic Interface Chris@19:


Chris@19:
Chris@19: Chris@19:

4.3.1 Complex DFTs

Chris@19: Chris@19:
     fftw_plan fftw_plan_dft_1d(int n0,
Chris@19:                                 fftw_complex *in, fftw_complex *out,
Chris@19:                                 int sign, unsigned flags);
Chris@19:      fftw_plan fftw_plan_dft_2d(int n0, int n1,
Chris@19:                                 fftw_complex *in, fftw_complex *out,
Chris@19:                                 int sign, unsigned flags);
Chris@19:      fftw_plan fftw_plan_dft_3d(int n0, int n1, int n2,
Chris@19:                                 fftw_complex *in, fftw_complex *out,
Chris@19:                                 int sign, unsigned flags);
Chris@19:      fftw_plan fftw_plan_dft(int rank, const int *n,
Chris@19:                              fftw_complex *in, fftw_complex *out,
Chris@19:                              int sign, unsigned flags);
Chris@19: 
Chris@19:

Chris@19: Plan a complex input/output discrete Fourier transform (DFT) in zero or Chris@19: more dimensions, returning an fftw_plan (see Using Plans). Chris@19: Chris@19:

Once you have created a plan for a certain transform type and Chris@19: parameters, then creating another plan of the same type and parameters, Chris@19: but for different arrays, is fast and shares constant data with the Chris@19: first plan (if it still exists). Chris@19: Chris@19:

The planner returns NULL if the plan cannot be created. In the Chris@19: standard FFTW distribution, the basic interface is guaranteed to return Chris@19: a non-NULL plan. A plan may be NULL, however, if you are Chris@19: using a customized FFTW configuration supporting a restricted set of Chris@19: transforms. Chris@19: Chris@19:

Arguments
Chris@19: Chris@19: Chris@19: Chris@19:

FFTW computes an unnormalized transform: computing a forward followed by Chris@19: a backward transform (or vice versa) will result in the original data Chris@19: multiplied by the size of the transform (the product of the dimensions). Chris@19: For more information, see What FFTW Really Computes. Chris@19: Chris@19: Chris@19: Chris@19: