Mercurial > hg > js-dsp-test
view fft/nayuki/fft.js @ 40:223f770b5341 kissfft-double tip
Try a double-precision kissfft
author | Chris Cannam |
---|---|
date | Wed, 07 Sep 2016 10:40:32 +0100 |
parents | d7c216b6a84f |
children |
line wrap: on
line source
/* * Free FFT and convolution (JavaScript) * * Copyright (c) 2014 Project Nayuki * http://www.nayuki.io/page/free-small-fft-in-multiple-languages * * (MIT License) * Permission is hereby granted, free of charge, to any person obtaining a copy of * this software and associated documentation files (the "Software"), to deal in * the Software without restriction, including without limitation the rights to * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of * the Software, and to permit persons to whom the Software is furnished to do so, * subject to the following conditions: * - The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * - The Software is provided "as is", without warranty of any kind, express or * implied, including but not limited to the warranties of merchantability, * fitness for a particular purpose and noninfringement. In no event shall the * authors or copyright holders be liable for any claim, damages or other * liability, whether in an action of contract, tort or otherwise, arising from, * out of or in connection with the Software or the use or other dealings in the * Software. */ "use strict"; /* * Computes the discrete Fourier transform (DFT) of the given complex vector, storing the result back into the vector. * The vector can have any length. This is a wrapper function. */ function transform(real, imag) { if (real.length != imag.length) throw "Mismatched lengths"; var n = real.length; if (n == 0) return; else if ((n & (n - 1)) == 0) // Is power of 2 transformRadix2(real, imag); else // More complicated algorithm for arbitrary sizes transformBluestein(real, imag); } /* * Computes the inverse discrete Fourier transform (IDFT) of the given complex vector, storing the result back into the vector. * The vector can have any length. This is a wrapper function. This transform does not perform scaling, so the inverse is not a true inverse. */ function inverseTransform(real, imag) { transform(imag, real); } /* * Computes the discrete Fourier transform (DFT) of the given complex vector, storing the result back into the vector. * The vector's length must be a power of 2. Uses the Cooley-Tukey decimation-in-time radix-2 algorithm. */ function transformRadix2(real, imag) { // Initialization if (real.length != imag.length) throw "Mismatched lengths"; var n = real.length; if (n == 1) // Trivial transform return; var levels = -1; for (var i = 0; i < 32; i++) { if (1 << i == n) levels = i; // Equal to log2(n) } if (levels == -1) throw "Length is not a power of 2"; var cosTable = new Array(n / 2); var sinTable = new Array(n / 2); for (var i = 0; i < n / 2; i++) { cosTable[i] = Math.cos(2 * Math.PI * i / n); sinTable[i] = Math.sin(2 * Math.PI * i / n); } // Bit-reversed addressing permutation for (var i = 0; i < n; i++) { var j = reverseBits(i, levels); if (j > i) { var temp = real[i]; real[i] = real[j]; real[j] = temp; temp = imag[i]; imag[i] = imag[j]; imag[j] = temp; } } // Cooley-Tukey decimation-in-time radix-2 FFT for (var size = 2; size <= n; size *= 2) { var halfsize = size / 2; var tablestep = n / size; for (var i = 0; i < n; i += size) { for (var j = i, k = 0; j < i + halfsize; j++, k += tablestep) { var tpre = real[j+halfsize] * cosTable[k] + imag[j+halfsize] * sinTable[k]; var tpim = -real[j+halfsize] * sinTable[k] + imag[j+halfsize] * cosTable[k]; real[j + halfsize] = real[j] - tpre; imag[j + halfsize] = imag[j] - tpim; real[j] += tpre; imag[j] += tpim; } } } // Returns the integer whose value is the reverse of the lowest 'bits' bits of the integer 'x'. function reverseBits(x, bits) { var y = 0; for (var i = 0; i < bits; i++) { y = (y << 1) | (x & 1); x >>>= 1; } return y; } } /* * Computes the discrete Fourier transform (DFT) of the given complex vector, storing the result back into the vector. * The vector can have any length. This requires the convolution function, which in turn requires the radix-2 FFT function. * Uses Bluestein's chirp z-transform algorithm. */ function transformBluestein(real, imag) { // Find a power-of-2 convolution length m such that m >= n * 2 + 1 if (real.length != imag.length) throw "Mismatched lengths"; var n = real.length; var m = 1; while (m < n * 2 + 1) m *= 2; // Trignometric tables var cosTable = new Array(n); var sinTable = new Array(n); for (var i = 0; i < n; i++) { var j = i * i % (n * 2); // This is more accurate than j = i * i cosTable[i] = Math.cos(Math.PI * j / n); sinTable[i] = Math.sin(Math.PI * j / n); } // Temporary vectors and preprocessing var areal = new Array(m); var aimag = new Array(m); for (var i = 0; i < n; i++) { areal[i] = real[i] * cosTable[i] + imag[i] * sinTable[i]; aimag[i] = -real[i] * sinTable[i] + imag[i] * cosTable[i]; } for (var i = n; i < m; i++) areal[i] = aimag[i] = 0; var breal = new Array(m); var bimag = new Array(m); breal[0] = cosTable[0]; bimag[0] = sinTable[0]; for (var i = 1; i < n; i++) { breal[i] = breal[m - i] = cosTable[i]; bimag[i] = bimag[m - i] = sinTable[i]; } for (var i = n; i <= m - n; i++) breal[i] = bimag[i] = 0; // Convolution var creal = new Array(m); var cimag = new Array(m); convolveComplex(areal, aimag, breal, bimag, creal, cimag); // Postprocessing for (var i = 0; i < n; i++) { real[i] = creal[i] * cosTable[i] + cimag[i] * sinTable[i]; imag[i] = -creal[i] * sinTable[i] + cimag[i] * cosTable[i]; } } /* * Computes the circular convolution of the given real vectors. Each vector's length must be the same. */ function convolveReal(x, y, out) { if (x.length != y.length || x.length != out.length) throw "Mismatched lengths"; var zeros = new Array(x.length); for (var i = 0; i < zeros.length; i++) zeros[i] = 0; convolveComplex(x, zeros, y, zeros.slice(0), out, zeros.slice(0)); } /* * Computes the circular convolution of the given complex vectors. Each vector's length must be the same. */ function convolveComplex(xreal, ximag, yreal, yimag, outreal, outimag) { if (xreal.length != ximag.length || xreal.length != yreal.length || yreal.length != yimag.length || xreal.length != outreal.length || outreal.length != outimag.length) throw "Mismatched lengths"; var n = xreal.length; xreal = xreal.slice(0); ximag = ximag.slice(0); yreal = yreal.slice(0); yimag = yimag.slice(0); transform(xreal, ximag); transform(yreal, yimag); for (var i = 0; i < n; i++) { var temp = xreal[i] * yreal[i] - ximag[i] * yimag[i]; ximag[i] = ximag[i] * yreal[i] + xreal[i] * yimag[i]; xreal[i] = temp; } inverseTransform(xreal, ximag); for (var i = 0; i < n; i++) { // Scaling (because this FFT implementation omits it) outreal[i] = xreal[i] / n; outimag[i] = ximag[i] / n; } }